Читать интересную книгу Математические чудеса и тайны - Мартин Гарднер

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 4 5 6 7 8 9 10 11 12 ... 21

Пока показывающий стоит, отвернувшись от доски, зритель берет три шашки и расставляет их на доске либо по диагонали, отмеченной на рис. 3 тремя буквами А, либо на противоположной диагонали, отмеченной тремя буквами 5, и начинает передвигать их, произнося про себя буквы своего имени или фамилии (или и те и другие).

При этом на каждую букву должен приходиться только один ход, который можно делать любой шашкой в любом направлении на одну клетку (шашки передвигаются только по белым полям).

После того как вся фамилия будет произнесена, зритель может повторить всю процедуру еще несколько раз, опять-таки выбирая шашки наугад. После этого показывающий поворачивается к зрителям и, мельком взглянув на доску, объявляет, с какого угла зритель начинал передвигать шашки: с левого верхнего или правого нижнего.

Объяснение. Имя и фамилия, которые нужно побуквенно произносить про себя, должны обязательно состоять из четного числа букв. Если и имя и фамилия зрителя содержат такое число букв, можно брать как то, так и другое. Если четное число букв имеет только одно из таких слов, то предложите произносить именно это слово. Если, наконец, оба слова состоят из нечетнего числа букв, то они должны произноситься друг за другом (так как сумма двух нечетных чисел четна).

Повернувшись к зрителям и взглянув на доску, обратите внимание на вертикальные четные ряды, считая их занумерованными, как на рисунке. Если в этих рядах окажется всего четное число шашек (т. е. две или ни одной), то вначале шашки стояли в правом нижнем углу, в противном случае — в левом верхнем[20]).

Мелкие предметы

Фокус с тремя предметами

Три различных предмета кладутся на столе в ряд, и занимаемые ими места (не сами предметы, а лишь места) обозначаются цифрами 1, 2 и 3. Показывающий поворачивается к зрителям спиной, а кто-нибудь из присутствующих начинает попарно менять местами предметы, называя при этом лишь соответствующие местам цифры. Так, например, переставляя предметы, стоящие на первом и третьем местах, он произносит вслух «один и три». Таким образом, зритель может передвигать предметы сколько угодно раз, но обязательно называя при этом соответствующие цифры.

Когда же он, наконец, устанет от этого занятия, он задумывает какой-нибудь предмет и меняет местами два других предмета, ничего не говоря показывающему. Далее он снова начинает попарно переставлять предметы произвольным образом, но опять называя вслух соответствующие цифры. Так зритель может продолжать, пока ему не надоест. В конце концов показывающий поворачивается к столу и немедленно указывает задуманный предмет.

Объяснение. Стоя спиной к столу, вы незаметно для зрителя пользуетесь в качестве счетного приспособления какой-нибудь рукой. Пусть три пальца (например, указательный, средний и безымянный) обозначают цифры 1, 2 и 3. Перед тем как отвернуться от предметов, заметьте положение одного из них. Допустим, что вы взяли для показа фокуса кольцо, карандаш и монету и кольцо занимает положение 1.

Тогда коснитесь большим пальцем того пальца, которому вы приписали цифру 1. По мере того как зритель будет сообщать вслух о своих перестановках, вы должны передвигать большой палец по пальцам, обозначающим цифры, следя при этом только за положением кольца. Так, если первая перестановка включала 1 и 3, вы перемещаете большой палец на палец под номером 3.

Если же перестановка включала 2 и 3, не затрагивая таким образом кольца, то вы ничего не делаете, оставляя большой палец на прежнем месте.

После того как зритель задумал предмет и сделал неизвестную вам передвижку остальных двух, он снова начинает называть вслух цифры, обозначающие перестановки. При этом вы продолжаете следить за положением кольца, как если бы оно не изменилось в результате неизвестной вам передвижки.

В заключение всех операций по перестановкам ваш большой палец остановится на каком-то пальце.

Допустим, что этот палец имеет номер 2. Взгляните на второе место на столе. Если там окажется кольцо, вы сразу же определяете, что было задумано именно кольцо, потому что его положение не изменилось в результате неизвестной вам передвижки.

Если же кольцо оказывается не там, где это указывает вам большой палец, то взгляните на два других предмета (кольцо и еще что-то), тот другой предмет (не кольцо) и будет задуманным.

Наш метод поразительно прост и легко догадаться, почему он приводит к цели. По сути, мы здесь имеем дело с задачей элементарной логики, где пальцы выполняют роль простейшей логической машины.

Фокус с отгадыванием одного из четырех предметов

Вот еще один увлекательный фокус, имеющий своим источником только что описанный фокус; он выглядит так: четыре спички располагаются на столе в ряд, три из них обращены головками в одну сторону, а четвертая, чтобы выделить ее среди остальных, — в противоположную. Показывающий стоит, повернувшись к зрителям спиной, а кто-нибудь из присутствующих переставляет спички на первый взгляд совсем произвольным образом. Все еще не поворачиваясь к зрителям, показывающий просит убрать сначала одну спичку, потом еще одну и, наконец, третью, оставляя таким образом на столе только одну спичку.

И эта оставшаяся спичка обязательно оказывается повернутой!

Этот фокус можно повторять много раз, и он всегда будет удаваться. Его можно показывать на любых четырех предметах, поэтому мы описываем его в этом разделе, а не там, где фокусы со спичками.

Объяснение. Положение спичек или предметов, расположенных на столе, обозначьте цифрами 1, 2, 3 и 4. Попросите кого-нибудь указать один из этих предметов. Прежде чем вы повернетесь к зрителям спиной, запомните его положение. Теперь попросите сделать пять перестановок, меняя при этом местами выбранный предмет с соседним. Если был указан предмет, находящийся на одном из концов, то, конечно, первую перестановку можно выполнить единственным образом; если же был указан не крайний предмет, то его можно переставить либо с правым соседним предметом, либо с левым.

Поскольку зритель не сообщает показывающему, как он меняет местами предметы, может возникнуть представление, что после данного числа перестановок выбранный предмет может занять любое место в ряду.

Однако это не так. Например, если указанный предмет занимал 2-е или 4-е (т. е. четное) место, то после пяти перестановок он может оказаться либо на 1-м, либо на 3-м (т. е. нечетном) месте. Наоборот, если мы начнем с 1-го или 3-го места, то придем ко 2-му или 4-му.

При нечетном числе перестановок так будет получаться всегда. В нашем примере мы предложили сделать пять перестановок, но можно было назначить семь или, скажем, двадцать девять (любое нечетное число) перестановок. Мы могли бы также задать четное число перестановок, но в этом случае выбранный предмет очутился бы на четном месте, если он был на четном вначале, или на нечетном, если на таком же месте он был вначале. Вопрос о числе перестановок может решать и сам зритель, хотя, конечно, это число он должен вам сообщить. Можно также, переставляя предметы, произносить по буквам свое имя и фамилию.

После того как перестановки будут закончены, вы должны указать зрителю, в каком порядке он должен поштучно убирать. три предмета, чтобы на столе остался четвертый выбранный. Это нужно делать так: Если вам известно, что указанный предмет может оказаться после окончания передвижек на 1-м или 3-м месте, то сначала попросите убрать предмет, находящийся на 4-м месте. Затем попросите зрителя поменять местами выбранный предмет с соседним. В результате этой последней перестановки указанный вам предмет всегда окажется средним из трех оставшихся. Теперь уже не составляет никакого труда оставить на столе выбранный зрителем предмет.

Если же, наоборот, конечное положение указанного предмета может быть 2-м или 4-м, то сначала следует убрать предмет, находящийся на 1-м месте, а все остальное происходит так же.

Глава третья. ТОПОЛОГИЧЕСКИЕ ГОЛОВОЛОМКИ

В предыдущих главах мы рассматривали только такие фокусы, метод показа которых носит математический характер. Мы не занимались фокусами, в которых только конечный результат может быть объяснен при помощи математики. Если, например, показывающий, играя в карты, набирает нужное число взяток, заранее расположив карты в колоде соответствующим образом, то этот эффект можно считать математическим в том смысле, что произвольное расположение карт в колоде каким-то непостижимым образом стало упорядоченным, но мы такой фокус все же не будем называть математическим, поскольку показ его основан не на математике, а просто на незаметной подмене одной колоды другой.

Подобный подход мы применим и к отбору фокусов для настоящей главы. Очень многие «таинственные» фокусы можно назвать в широком смысле топологическими, так как при их показе как будто нарушаются элементарные топологические законы. Один из самых старинных фокусов такого рода известен под названием «соединенных колец»: шесть или более больших железных колец таинственным образом сцепляются и расцепляются — явление, кажущееся совершенно невозможным в силу свойств обычных замкнутых кривых линий. Другие фокусы, в которых кольца снимаются или надеваются на веревку или палку, оба конца которой зажаты в руках зрителя, можно было бы объяснить таинственными соединениями или разрывами цепи, поскольку зритель, держащий веревку, представляет собой замкнутую линию, через которую как-то проходит наше кольцо. Однако большинство таких фокусов основано на механических методах, небольшой ловкости рук или других «таинственных» приемах, ничего общего не имеющих с топологией.

1 ... 4 5 6 7 8 9 10 11 12 ... 21
На этом сайте Вы можете читать книги онлайн бесплатно русская версия Математические чудеса и тайны - Мартин Гарднер.
Книги, аналогичгные Математические чудеса и тайны - Мартин Гарднер

Оставить комментарий