Читать интересную книгу Золотой билет - Лэнс Фотноу

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 4 5 6 7 8 9 10 11 12 ... 37

В некоторых странах спешно переписывают трудовое законодательство, чтобы человека нельзя было просто взять и заменить на урбанский алгоритм. Толку от этих законов немного, поскольку остальные страны уже создали слишком высокую конкуренцию на рынке труда. Впрочем, судя по некоторым признакам, ситуация потихоньку начинает выправляться сама. Появление алгоритма послужило хорошим толчком для развития впавшей в застой экономики. В университетах ввели курс по урбанским методам оптимизации: слушателей учат быстро и легко приспосабливать урбанский алгоритм для решения любой проблемы. Со временем благодаря алгоритму появится даже больше рабочих мест, чем было потеряно. И все же многие его просто ненавидят, понимая, что не все, кто лишился работы, сумеют приспособиться к новой экономической действительности.

Правительства усердно разрабатывают законы для защиты населения от последствий внедрения алгоритма, однако научно-технический прогресс назад не развернешь. Человек адаптируется быстро; по данным соцопросов, сейчас уже мало кто мечтает повернуть время вспять и перенестись в старый добрый 2012-й, в «до-урбанскую» эру.

С небес на землю

Трудно представить, что один-единственный алгоритм способен полностью перевернуть нашу жизнь. Неужели все, что можно описать словами, можно и создать? Неужели можно без труда получать практически любые знания? Звучит невероятно, и именно поэтому большинство ученых не верят в равенство P и NP и полагают, что у нас никогда не будет ни урбанского, ни еще какого-нибудь универсального алгоритма.

Впрочем, рассказанные в этой главе сказки вполне могут стать реальностью – вне зависимости от того, равны классы P и NP или не равны. Конечно, для этого нам потребуется больше времени; к тому же в отсутствие волшебной программы, позволяющей решать сразу все задачи, придется бороться с каждой проблемой отдельно. Однако человеческая изобретательность не знает границ, так что мы в конце концов найдем способ реализовать все свои мечты.

Глава 3. Классы P и NP

Заклятые друзья

Лучший способ получить наглядное представление о классах P и NP – отправиться в воображаемое Королевство заклятых друзей, в котором любые два жителя либо дружат, либо враждуют.

В Королевстве проживает двадцать тысяч человек. Глядя на каждого из них в отдельности, ничего такого не подумаешь… однако стоит только свести двух жителей вместе – и происходит нечто совершенно необъяснимое: они или немедленно проникаются взаимной симпатией и тут же становятся близкими друзьями, или с первого взгляда превращаются в злейших врагов. Никто и никогда не видел, чтобы между двумя жителями сложилось нечто среднее между дружбой и враждой (как можно было бы заключить из названия «заклятые друзья»): они всегда или дружат взахлеб, или терпеть друг друга не могут.

Никакой системы здесь не наблюдается. Друг вашего друга – точно так же, как и враг вашего врага – может быть вам другом, а может и врагом. Зависимость от пола, расы, вероисповедания и социального статуса тоже вроде бы отсутствует; известно только, что друзей у жителей Королевства обычно намного меньше, чем врагов.

В интернете можно найти массу информации о том, кто с кем дружит. Специалисты факультета компьютерных наук Королевского технологического института проанализировали данные социальных сетей, включая Facebook и Twitter, и составили практически полную базу друзей и врагов в Королевстве. В данной главе мы поговорим о том, как эти данные можно использовать.

Шесть степеней отчуждения

Выберем наугад двух жителей Королевства; пусть их зовут Элис и Джордж. Маловероятно, что Элис и Джордж дружат. Возможно, между ними существует связующее звено – общий друг Боб. А возможно, и нет. Исследователи Королевского технологического нарисовали схему, в которой каждому жителю Королевства соответствует один элемент; если жители дружат, то соответствующие элементы соединяются на схеме линией. Один из фрагментов схемы выглядел примерно так:

Рис. 3.1. Дружеские связи в Королевстве

Чтобы добраться от Элис до Джорджа, нужно пройти по цепочке из шести связей: Элис дружит с Бобом, Боб – с Кэти, Кэти – с Дэвидом, Дэвид – с Евой, Ева – с Фредом, а Фред – с Джорджем. Исследователи задумались: можно ли любую пару жителей соединить относительно короткой цепочкой дружеских связей? Проявится ли здесь феномен «тесного мира»? Кстати, название феномена пошло вовсе не от аттракциона в Диснейленде, а от слов «мир тесен», которые мы обычно произносим, когда знакомимся с кем-то и выясняем, что нас связывает нечто общее (пусть даже очень отдаленно).

В 1967 году психолог Стэнли Милгрэм поставил свой знаменитый эксперимент по проверке теории «тесного мира». Сначала он выбрал некоего биржевого маклера, проживающего в Бостоне. Имя маклера сохранялось в секрете; для удобства назовем его Том Джонс. Далее совершенно случайным образом в Небраске были выбраны сто держателей акций. Потом – сто людей, не являвшихся акционерами. И, наконец, в Бостоне по объявлению в газетах были найдены еще сто участников. Вторая группа из Небраски и группа из Бостона не имели никакого отношения к инвестиционному миру. Каждому из трехсот участников Милгрэм отослал пакет, в который вложил список инструкций, реестр и пятнадцать почтовых открыток с маркой, адресованных ему в Гарвардский университет. Инструкции выглядели так:

1. Занесите свое имя в реестр.

2. Заполните одну из открыток и бросьте ее в почтовый ящик.

3. Если вы лично знаете бостонского биржевого маклера по имени Том Джонс, перешлите пакет ему.

4. В противном случае выберите среди своих знакомых кого-нибудь, кто, по-вашему, с большей степенью вероятности знает Тома Джонса и чье имя пока не значится в реестре, и перешлите пакет ему (или ей).

Из трехсот участников двести семнадцать переслали пакет своим друзьям. Шестьдесят четыре письма в конце концов добрались до цели, т. е. до Тома Джонса. Средняя длина цепочки оказалась равна 5,2; в результате возникло понятие «шесть степеней отчуждения», означающее, что любых двух человек на планете в среднем разделяет цепочка из шести связей. Отдельные аспекты эксперимента подверглись резкой критике; впрочем, Милгрэм и сам не возводил феномен шести степеней в статус закона, однако его эксперимент показал, что мы связаны гораздо теснее, чем можно было бы ожидать.

Придумывая различные определения понятия связи – более специфические, чем простое знакомство, – можно исследовать и анализировать людские сообщества. Иногда таким образом возникают салонные игры, в которых требуется вычислить расстояние от произвольного человека до некой «центровой» персоны, обладающей, как правило, большим количеством связей. В 1994 году Кевин Бэйкон, выступая в поддержку своего фильма «Дикая река», в шутку заметил, что все актеры в Голливуде снимались либо с ним самим, либо с теми, кто с ним снимался. Тут же родилась игра под названием «Шесть шагов до Кевина Бэйкона», цель которой – найти кратчайший путь между заданным актером и Бэйконом через актеров, с которыми они вместе снимались. Для многих актеров путь до Бэйкона (и, соответственно, друг до друга) оказался очень коротким. Например, Чарли Чаплин находится от Бэйкона всего в трех шагах: в 1967 году он снял фильм «Графиня из Гонконга», в котором сам сыграл второстепенную роль; графиню играла Софи Лорен, которая в 1979 году снялась в малоизвестном фильме «Сила огня»; одну из главных ролей в этом фильме сыграл Илай Уоллак, позднее появившийся в эпизодической роли в фильме «Таинственная река»; в этом же фильме снимался и Бэйкон.

У математиков тоже есть похожая игра: через совместные публикации они ищут расстояние до Пола Эрдёша – гения комбинаторики и рекордсмена по количеству публикаций[2].

В Королевском технологическом решили выяснить, выполняется ли закон «шести степеней» для дружеских связей между жителями Королевства. Как проверить, существует ли цепочка из шести связей между Элис и Джорджем? Простейший способ – перебрать все существующие цепочки длины шесть. Вот только в Королевстве, насчитывающем 20000 жителей, таких цепочек может набраться 3198400279980000480000. Даже если предположить, что компьютер будет проверять триллион цепочек в секунду, на решение задачи уйдет более ста лет. Неужели нет способа получше?

Оказывается, есть. Существует совсем не сложная процедура, позволяющая быстро определить расстояние между Элис и Джорджем.

• Присвоим Элис число 0.

• Присвоим всем друзьям Элис число 1.

• Присвоим число 2 всем друзьям тех, кто получил число 1 и у кого пока еще нет числа.

1 ... 4 5 6 7 8 9 10 11 12 ... 37
На этом сайте Вы можете читать книги онлайн бесплатно русская версия Золотой билет - Лэнс Фотноу.
Книги, аналогичгные Золотой билет - Лэнс Фотноу

Оставить комментарий