Читать интересную книгу Научная революция XVII века - Владимир Кирсанов

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 74 75 76 77 78 79 80 81 82 ... 92

С другой стороны, также по свидетельству Ньютона, он присутствовал по крайней мере на двух лекциях Барроу, и вполне вероятно, что именно у Барроу он одолжил книгу Валлиса.

В январе 1665 г. Ньютон окончил университет со степенью бакалавра искусств (Bachelor of Art), но это событие было само по себе незначительным по сравнению с удачей на выборах предыдущего года и его собственными идеями в математике и физике. Теперь, наконец, он мог отдаться целиком научным исследованиям. Что он и сделал. Он работал с такой увлеченностью, что забывал про еду и сон. Утверждают, что его кот сильно растолстел, постоянно доедая за него обед, который оставался нетронутым на подносе.

3

Итак, в середине января 1665 г. Ньютон стал бакалавром искусств. Университетский сенат присвоил ему, как и его однокашникам, звание авансом, ибо процедура экзаменационных диспутов, приходившаяся на период великого поста и называвшаяся потому «квадрагесима» (сорокадневный пост — quadragesima), была еще впереди. Для Ньютона это было тяжелое испытание — и вследствие трудностей, связанных с подготовкой к экзаменам, и по причине их очевидной бессмысленности, а главным образом потому, что его голова была занята совершенно другим, а именно математическими проблемами нового анализа. С трудом выдержав выпускные экзамены, Ньютон продолжал свои исследования, которые, несмотря на всю их важность, оставались никому не известными.

Летом страну постигло катастрофическое бедствие — эпидемия чумы. Осенью правительство запретило ярмарки и публичные собрания, а еще раньше — 7 августа занятия в Тринити-колледже были прекращены, а университет закрыт. Кембридж, как многие другие города Англии, опустел. Люди стремились укрыться от эпидемии в деревнях и на хуторах, находившихся в безопасной изоляции, студенты, как правило, уезжали вместе со своими тьюторами, чтобы быть в состоянии продолжать учебу вне стен университета. Ньютон не поехал с Пуллейном (окончание университета не означало конца учебы, Ньютон оставался стипендиатом колледжа, и ему еще предстояло получить степень магистра), их интересы разошлись, и Пуллейн ничему его научить не мог. Ньютон отправился в Вулсторп, к матери, и провел там почти два года за вычетом поездки в Кембридж весной 1666 г.

Эти годы оказались для него удивительно плодотворными. Позднее он так вспоминал о них: «В начале 1665 г. я открыл метод приближенных рядов и правило для сведения любой степени любого бинома к таким рядам. В мае того же года я открыл метод касательных Грегори и Слюза, а в ноябре — прямой метод флюксий и в следующем году, в январе,— теорию цветов, а затем, в мае, имел в распоряжении обратный метод флюксий. И в тот же самый год я начал думать о тяжести, простирающейся до орбиты Луны (найдя, как вычислить силу, с которой шар, обращающийся внутри сферы, давит на поверхность сферы); из кеплеровского правила, что периоды планет находятся в полуторном отношении к их расстоянию от центра их орбит, я вывел, что силы, которые удерживают планеты на их орбитах, должны быть обратно пропорциональны квадратам их расстояний от центров, вокруг которых они обращаются: в связи с этим я сравнил силу, потребную, чтобы удержать Луну на орбите, с силой тяжести на поверхности Земли и нашел их весьма близко совпадающими (found them answer pretty nearly). Все это произошло в два чумных года 1665—1666. Ибо в это время я находился в наилучшем для открытий возрасте и думал о математике и философии больше, чем когда-либо позже» [2, с. 143].

Это довольно часто цитируемое высказывание Ньютона содержит поразительный список результатов, которых ему удалось достичь во время вулсторпского уединения, но вместе с тем, исходя из него, может создаться впечатление, что все то, что составляет славу и заслугу Ньютона в науке, а именно изобретение дифференциального и интегрального исчисления, а также открытие закона всемирного тяготения, было сделано им в эти молодые годы, а затем еще долгие десятилетия ждало своего опубликования. На самом деле эти годы знаменуют лишь возникновение идеи (что особенно существенно для представления о всемирном тяготении), которая лишь впоследствии оформилась в строгую теорию.

В каком-то смысле проблема эволюции творчества Ньютона сродни проблеме научной революции как таковой. Представление о том, что главный результат был им получен в годы вулсторпского затворничества — недаром они часто именуются «чудесными годами» — anni mirabiles — в результате чудесного озарения, в такой же степени не соответствует действительности, как и бытовавшее до нашего века представление о том, что наука нового времени возникла, как феникс из пепла, вне всякой связи с предшествующей средневековой схоластической и натурфилософской традициями. К счастью, творчество Ньютона представляет собой более благодатный и обозримый материал для анализа.

Все вехи в приведенном выше высказывании Ньютона указаны правильно. К этому можно добавить, что Ньютона в эти годы особенно отличала редкая целеустремленность. Если же он брался за что-нибудь, то размышлял об этом постоянно и доводил дело до конца. До начала 1666 г. в течение 18 месяцев он занимался исключительно математикой. Закончив 13 ноября 1665 г. свою последнюю математическую статью, он исчерпал свои возможности на данное время и на шесть месяцев прекратил занятия математикой совершенно, «как будто бы он погасил свечу», пишет Уэстфолл по этому поводу. В действительности он «зажег свечу» еще в мае и в октябре 1666 г., когда написал две статьи о методе флюксий. Весь следующий год он занимался физическими проблемами, и в первую очередь механикой.

Он заинтересовался проблемами, с которыми столкнулся при чтении Декарта, но решение которых Декартом его явно не удовлетворило, а именно проблемой удара и анализом вращательного движения.

Как мы видели выше, законы удара по Декарту противоречили здравому смыслу, главным образом в результате того, что он не понимал в полной мере векторного характера величины количества движения. Ньютон решил подойти к проблеме по-новому, представив два движущихся тела как одну систему. Точнее, он рассматривает два тела как систему, центр тяжести которой движется инерциально вне зависимости от того, сталкиваются эти два тела или нет.

В январе 1665 г. он составляет сводку результатов, относящихся к проблеме удара, под названием «Об отражении», в котором дает определения силы, количества движения и т. д.[17] Затем Ньютон высказал предположение, что при столкновении двух тел одно тело действует на другое точно так же, как это другое на первое, и получающиеся изменения в движении обоих тел оказываются одинаковыми. Но Ньютон сразу же понял, что это правило справедливо лишь для равных тел, участвующих в одинаковом движении, поэтому стал искать возможность представить различные движения как движения одинаковые. Такую возможность он увидел в том, чтобы рассматривать движения сталкивающихся тел относительно их общего центра тяжести.

Сначала он доказал, что два тела, движущиеся равномерно, имеют равные движения по отношению к их общему центру тяжести, а затем и то, что в этом случае центр тяжести будет либо покоиться, либо двигаться равномерно и прямолинейно. После этого Ньютон рассматривает общий случай соударения двух тел (представленный на рисунке). Здесь он также говорит о равных движениях тел b и с относительно линии kp или общего центра тяжести. Под словом «движение» надо понимать количество движения, которое имеет не только абсолютную величину, но и направление. Под термином «равные движения» понимаются количества движения, равные по абсолютной величине и направленные либо к общему центру тяжести, либо от него. После того как тела b и с сталкиваются, Ньютон говорит, что «насколько сильно b отжимает с от линии kp, настолько сильно и с отжимает b от нее». Следовательно, когда два тела будут находиться в e и g после столкновения, они будут иметь равные движения от их общего центра тяжести, который будет продолжать равномерно двигаться по линии kp. Таким образом, мы видим, что Ньютон пришел к векторному пониманию количества движения.

Рассмотрение проблемы удара самым тесным образом связано с последующим анализом вращательного движения. Вначале он рассматривает абсолютно упругий прямой удар шара о неподвижный экран. Несколько модернизируя рассуждения Ньютона, можно сказать, что изменение количества движения равно удвоенной его первоначальной величине. Такое же изменение количества движения будет иметь тело, движущееся по окружности при прохождении ее половины. Или, как пишет Ньютон, «вся сила», с которой тело стремится удалиться от центра при совершении полуоборота, вдвое больше той, которая потребна для того, чтобы породить движение. Между этими двумя случаями существует различие, заключающееся в том, что при ударе мы имеем мгновенно действующую силу, а при вращательном движении — силу, действующую постоянно.

1 ... 74 75 76 77 78 79 80 81 82 ... 92
На этом сайте Вы можете читать книги онлайн бесплатно русская версия Научная революция XVII века - Владимир Кирсанов.

Оставить комментарий