Шрифт:
Интервал:
Закладка:
Подтверждение существования суперчастиц помогло бы дать ответ на два наболевших вопроса. Во-первых, верна ли струнная теория? Несмотря на то что обнаружить струны прямым путем чрезвычайно сложно, может оказаться возможным обнаружить нижние октавы или резонансы струнной теории. Если будут открыты счастицы, то это станет большим сдвигом в струнной теории, обеспечивая ее экспериментальное подтверждение (хотя все же это не будет прямым доказательством ее истинности).
Во-вторых, это предоставило бы наиболее вероятного претендента на роль темного вещества. Если темное вещество состоит из субатомных частиц, то они должны обладать стабильностью и нейтральным зарядом (иначе они были бы видимы), а также между ними должно быть гравитационное взаимодействие. Все эти три качества являются характерными для частиц, которые предсказывает струнная теория.
Когда будет запущен Большой адронный коллайдер, он станет самым мощным ускорителем частиц. И все же для большинства физиков это не предел мечтаний. В 1980-е годы президент Рональд Рейган одобрил проект постройки Сверхпроводящего суперколлайдера (SSC), гигантской конструкции, достигающей 80 км в окружности. Строительство этого ускорителя частиц планировалось произвести возле Далласа (штат Техас). По сравнению с Суперколлайдером Большой адронный коллайдер показался бы просто крошкой. В то время как Большой адронный коллайдер позволяет сталкивать частицы с энергией в 14 триллионов электронвольт, по проекту Суперколлайдер должен обеспечить столкновения частиц с энергией в 40 триллионов электронвольт. Первоначально проект получил одобрение, но в последние дни слушаний Конгресс Соединенных Штатов внезапно отклонил его. Это стало тяжелым ударом по физике высоких энергий и задержало развитие этой области на целое поколение.
Поначалу предметом спора являлись стоимость проекта, составляющая 11 миллиардов долларов, и научные приоритеты. Мнения представителей научного сообщества по поводу Сверхпроводящего суперколлайдера разделились: некоторые физики заявляли, что проект выкачает средства, которые могли бы пойти на их собственные исследования. Спор разгорелся настолько, что даже «Нью-Йорк тайме» опубликовала критическую редакционную статью, где говорилось об опасностях «большой науки», которая может задушить «малую науку». (Эти аргументы беспочвенны, поскольку средства на строительство Сверхпроводящего суперколлайдера должны были поступать из других источников, а не из бюджета «малой науки». Реальным соперником проекта была космическая станция, которая многими учеными рассматривалась поистине как пустая трата денег.)
Но оглядываясь назад, можно сказать, что суть спора сводилась к умению говорить с широкой общественностью на доступном языке. В некотором смысле, мир физики привык к тому, что строительство чудовищных ускорителей частиц получало одобрение со стороны Конгресса, поскольку русские строили свои ускорители. В сущности, русские строили свой ускоритель УНК (Ускорительно-накопительное кольцо. — Прим. перге.), соревнуясь со Сверхпроводящим суперколлайдером. На карту были поставлены честь и престиж нации. Но Советский Союз развалился,[9] строительство было остановлено, и шостепенно ветер перестал надувать паруса программы постройки Сверхпроводящего суперколлайдера.
Настольные ускорители частицС появлением Большого адронного коллайдера физики постепенно приближаются к верхнему пределу энергии, которую можно получить при помощи современного поколения ускорителей частиц. Стоимость этих ускорителей исчисляется в десятках миллиардов долларов, а по размеру они превосходят многие большие современные города. Они настолько грандиозны, что их строительство возможно лишь при совместной деятельности нескольких государств. Если мы хотим преодолеть барьер, ограничивающий возможности традиционных ускорителей, то нам необходимы принципиально новые идеи и подходы. Святой Грааль для физиков, занимающихся частицами, — это создание «настольного» ускорителя частиц, который сможет создать пучки с энергией в миллиарды электронвольт, существенно экономя на размерах и стоимости по сравнению с традиционными ускорителями,
Чтобы понять, в чем заключается проблема, представьте себе эстафету, участники которой расставлены по кругу вдоль длинной беговой дорожки. Соревнуясь в беге, участники передают друг другу палочку. Теперь представьте, что каждый раз, когда палочка переходит от одного бегуна к другому, участникам сообщается дополнительная энергия, то есть они начинают бежать все быстрее и быстрее.
Нечто похожее наблюдается в ускорителе частиц, где роль палочки выполняет пучок субатомных частиц, которые двигаются по кругу. Каждый раз, когда пучок переходит от одного участника к другому, в пучок инжектируется высокочастотная энергия, все больше и больше разгоняя его. По такому принципу строились ускорители частиц на протяжении последних пятидесяти лет. Проблема традиционных ускорителей частиц состоит в том, что мы подходим к пределу высокочастотной энергии, которую можно использовать для приведения ускорителя частиц в действие.
Для решения этой досадной проблемы ученые экспериментируют с кардинально новыми способами закачки энергии в пучок, например использованием мощныхлазерныхлучей, мощность которых экспоненциально растет. Одним из преимуществ лазерного света является его «когерентность», то есть все световые волны вибрируют точно в унисон, благодаря чему возможно создание невероятно мощных лучей. Сегодня лазерные лучи могут генерировать мощный энергетический импульс в триллионы ватт (тераватты) мощности за короткий промежуток времени. (Для сравнения, атомная электростанция способна генерировать какой-то несчастный миллиард ватт мощности, но она стабильна). В настоящее время становится возможным использование лазеров, которые могут генерировать до тысячи триллионов ватт (квадриллион ватт, или петаватт).
Лазерные ускорители частиц работают по следующему принципу. Лазерный свет достаточно горяч, чтобы создать газ из плазмы (скопления ионизированных атомов), который затем движется с волнообразными колебаниями на высоких скоростях, подобно приливной волне. Затем пучок субатомных частиц ловит эту попутную волну плазмы. При инжектировании большего количества лазерной энергии движение волны плазмы ускоряется, сообщая дополнительную энергию пучку частиц на этой волне. Недавно ученым из Лаборатории Резерфорда-Эпплтона в Англии удалось, направив лазер в 50 тераватт в твердую цель, произвести пучок протонов, несущий до 400 миллионов электронвольт (МэВ) энергии в колли-мированном пучке. Физики из Парижской политехнической школы разогнали электроны до 200 МэВ на расстоянии в один миллиметр.
Созданные на данный момент лазерные ускорители частиц отличаются малыми размерами и небольшой мощностью. Но представим на секунду, что масштабы такого ускорителя частиц можно увеличить таким образом, чтобы он работал на расстоянии не миллиметра, а целого метра. Тогда он мог бы разогнать электроны до 200 ГэВ на расстоянии одного метра; тем самым была бы достигнута цель создания настольного ускорителя частиц. Еще одним важным этапом стало ускорение электронов на расстоянии 1,4 метра физиками из Стэнфордского центра линейного ускорителя (SLAC) в 2001 году. Вместо лазерного луча они создали плазменную волну путем инжектирования пучка заряженных частиц. Хотя полученная ими энергия была достаточно низкой, этот опыт продемонстрировал, что плазменные волны могут ускорять частицы на расстоянии метра.
Темпы исследований в этой перспективной области очень высоки: энергия, достигаемая при помощи этих ускорителей, возрастает в 10 раз каждые пять лет. При таком развитии событий уже не за горами создание прототипа настольного ускорителя частиц. Если это предприятие окажется успешным, то Большой адронный коллайдер будет смотреться как последний динозавр. Какой бы перспективной ни казалась эта затея, на пути ее реализации стоит множество преград. Подобно серфингисту, которому сложно не упасть, катаясь на предательской волне, очень сложно поддержать пучок так, чтобы он должным образом «ехал» на плазменной волне (в число проблем входит фокусировка пучка и поддержание его стабильности и интенсивности). Однако ни одна из этих проблем не представляется непреодолимой.
БудущееЕсть несколько задумок для доказательства струнной теории. Эдвард Виттен выражает надежду на то, что в момент Большого Взрыва вселенная расширялась столь стремительно, что, возможно, вместе с ней растянулась и струна, в результате чего в космосе образовалась струна астрономических размеров. Он размышляет: «Несмотря на то что это звучит несколько нереально, это мой любимый сценарий доказательства струнной теории, поскольку ничто не решит вопрос настолько радикально, как наблюдение струны в телескоп».
- Научная революция XVII века - Владимир Кирсанов - Прочая научная литература
- Подлинная история времени без ложных вымыслов Стивена Хокинга. Что такое время. Что такое национальная идея - Владимир Бутромеев - Прочая научная литература
- Ошибка Коперника. Загадка жизни во Вселенной - Калеб Шарф - Прочая научная литература