Шрифт:
Интервал:
Закладка:
— Что случилось, черт побери!? — запрашиваете вы ЗАРЮ по лазерной связи.
— Тише, тише! — успокаивает она, — Вы рассчитали орбиту, используя описание законов гравитации Ньютона. Но ньютоновское описание — только приближение к настоящим законам гравитации, которые управляют Вселенной[29]. Это приближение прекрасно действует вдали от горизонта, но плохо поблизости от него. Гораздо более точным является описание Эйнштейна на основе общей теории относительности, которое с огромной точностью согласуется с истинными законами гравитации вблизи горизонта и предсказывает, что около него гравитационное тяготение становится сильнее, чем по закону Ньютона. Чтобы оставаться на круговой орбите, на которой усиленная гравитация уравновешивается центробежной силой, вы должны увеличить вашу центробежную силу, а это означает, что должна увеличиться ваша орбитальная скорость вокруг дыры. После прохождения орбиты в три окружности горизонта, вы должны перевернуть капсулу и не тормозить, а ускорять вращение. Потому после пересечения тройной орбиты гравитация пересилила вашу центробежную силу и швырнула вас к центру.
«Будь проклята эта ЗАРЯ!» — ругаетесь вы про себя. «Она всегда отвечает на мои вопросы, но никогда не сообщит о критической ситуации заранее. Она никогда не предупредит меня, когда я собираюсь действовать неверно!» Вы знаете, конечно, причину. Человеческая жизнь потеряла бы свою «изюминку» и разнообразие, если бы компьютерам разрешалось предостерегать от совершения ошибок. В 2032 г. Всемирный Совет принял закон об обязательной установке во все компьютеры блока Гобсона, запрещающего такие предупреждения, вы разворачиваете капсулу и начинаете осторожно чередовать: ускорение, снижение по спирали, свободный дрейф, ускорение, снижение по спирали, дрейф, ускорение, снижение, дрейф…, что приводит к уменьшению окружности орбиты с трех окружностей горизонта до 2,5; 2,0; 1,6; 1,55; 1,51; 1,505; 1,501;…
Какое разочарование! Чем больше раз вы разгоняетесь и чем быстрее ваше результирующее движение по круговой орбите, тем меньше становится ваша орбита; но когда скорость дрейфа приближается к скорости света, орбита приближается к окружности, равной 1,5 окружности горизонта. Поскольку вы не можете двигаться быстрее света, нет никакой надежды, что этим способом можно подойти ближе к горизонту.
Вы опять обращаетесь к ЗАРЕ за помощью, и она в очередной раз успокаивает вас и объясняет: внутри окружности в 1,5 горизонта вообще нет круговых орбит. Гравитационное тяготение там такое сильное, что его не может уравновесить никакая центробежная сила, даже если это вращение со скоростью света. Если вы хотите подойти ближе, говорит ЗАРЯ, вы должны сойти с круговой орбиты и начать падать на горизонт, притормаживая, чтобы предотвратить катастрофическое падение. Сила двигателей вашей капсулы будет компенсировать силы гравитации дыры, пока вы будете медленно спускаться и затем висеть над горизонтом, как астронавты с помощью ракетных двигателей парили над поверхностью Луны.
Теперь, узнав о некоторых предосторожностях, вы спрашиваете ЗАРЮ совета по поводу последствий такой сильной тяги ракетных двигателей. Вы объясняете, что вы хотите парить на такой высоте, которая соответствует 1,0001 окружности горизонта, где проявляется большинство эффектов, наблюдаемых на горизонте, но откуда вы можете потом уйти. Если я буду поддерживать там капсулу двигателями с постоянной тягой, какой величине ускорения она будет соответствовать? «150 миллионов земных ускорений», — мягко отвечает ЗАРЯ.
С чувством глубокого разочарования вы разгоняетесь и по спирали уходите в люк вашего звездного корабля.
После долгого сна и последующего пятичасового расчета по формулам общей теории относительности применительно к черным дырам, трехчасового штудирования Атласа черных дыр Шехтера и часовой консультации с командой вы формулируете план следующей части путешествия.
Потом команда передаст Всемирному географическому обществу, оптимистически предполагая, что оно все еще существует, отчет о ваших экспериментах со Стрельцом. В конце сообщения излагается ваш новый план.
Расчеты показали, что чем больше дыра, тем меньшая тяга требуется ракете для удерживания ее на окружности в 1,0001 горизонта. Для болезненной, но терпимой тяги в 10 земных g масса дыры должна быть в 15 триллионов (15х1012) солнечных масс. Самая близкая из таких дыр называется Гаргантюа, находится она на расстоянии 100000 (105) световых лет от нашей галактики (Млечный Путь) и в 100 миллионах (108) световых лет от кластера галактик Девы, вокруг которого вращается Млечный Путь. Фактически она находится вблизи квазара 3C273, в 2 миллиардах (2х109) световых лет от Млечного Пути, что составляет 10 % расстояния до края наблюдаемой части Вселенной.
План, который передала ваша команда, состоит в путешествии к Гаргантюа. При использовании обычного ускорения в 1 g в первой половине пути и такого же замедления для второй половины ваше путешествие займет 2 миллиарда лет по земному времени, но благодаря зависящему от скорости сокращению времени только 42 года по часам звездолета. Если члены Всемирного географического общества не хотят 4 миллиарда лет находиться в состоянии глубокого анабиоза (2 миллиарда лет уйдет на достижение вашим звездолетом окрестностей Гаргантюа и 2 миллиарда на то, чтобы сообщение от него достигло Земли), они не смогут получить ваше следующее сообщение.
ГаргантюаЧерез сорок два года по часам звездолета вы замедляетесь в окрестности Гаргантюа. Над вашей головой висит квазар 3C273 с двумя бьющими из центра блестящими голубыми струями[30]; под ним находится черная бездна — Гаргантюа. Выйдя на орбиту вокруг Гаргантюа и проведя обычные измерения, вы убеждаетесь, что действительно его масса равна 15 триллионам солнечных масс и что вращается он очень медленно. Из этих данных вы вычисляете, что длина окружности его горизонта составляет 29 световых лет. Наконец, рассчитываете, что это дыра, окрестность которой вы сможете исследовать, испытывая допустимые приливные силы и ускорения! Вы настолько уверены в безопасности, что решаете опустить к горизонту вместо капсулы весь звездолет.
Однако прежде чем начать спуск, вы приказываете команде сделать фотографии гигантского квазара над вами, триллионов звезд, окружающих Гаргантюа, и миллиардов галактик, мерцающих на небе. Они также фотографируют черный диск Гаргантюа под вами, который по размеру примерно соответствует диску Солнца на Земле. На первый взгляд, кажется, что он загораживает свет всех звезд и галактик, расположенных позади. Но приглядевшись, вы обнаруживаете, что гравитационное поле дыры действует как линза[31], отклоняя свет звезд и галактик вблизи края горизонта и фокусируя его в тонкое яркое кольцо по краю черного диска. На этом кольце вы видите несколько изображений от каждой загороженной звезды: одно изображение образуется световыми лучами, которые отклонились вблизи левого края дыры, другое — лучами, отклоненными от правого края, третье — лучами, которые, прежде чем направиться в вашу сторону, сделали полный оборот вокруг дыры, четвертое — лучами, которые дважды обежали дыру, и т. д. В результате получилась очень сложная кольцеобразная структура, которую сфотографировала для детального будущего изучения ваша команда.
Фотографирование закончено, вы приказываете Карес начать спуск звездолета. Но вам придется набраться терпения: дыра настолько велика, что спуск с последовательными ускорениями и замедлениями с 1 g для достижения цели — орбиты в 1,0001 окружности горизонта, потребует 13 лет по времени звездолета.
Пока происходит спуск, команда регистрирует с помощью аппаратуры изменения неба вокруг звездолета. Наиболее заметное изменение — постепенное увеличение диска черной дыры под кораблем. Вы ожидаете, что он перестанет расти, когда закроет все небо под вами как черный пол, а небо над вами остается таким же ясным, как на Земле. Но нет — черный диск продолжает расти, заворачиваясь по сторонам вашего звездолета, и закрывает постепенное все пространство за исключением яркого круглого отверстия сверху, через которое видна окружающая Вселенная (рис. П.4). Это происходит так, как будто вы попали в пещеру и удаляетесь все дальше и дальше от входа, который кажется все меньшим и меньшим светлым пятном.
- Интерстеллар: наука за кадром - Кип Торн - Науки о космосе
- Гайд по астрономии. Путешествие к границам безграничного космоса - Уоллер Уильям - Науки о космосе
- Всё о космических путешествиях за 60 минут - Пол Парсонс - Науки о космосе
- Погибшие в космосе - Александр Болонкин - Науки о космосе
- Путешествие к далеким мирам - Карл Гильзин - Науки о космосе