Шрифт:
Интервал:
Закладка:
Уже есть совершенно небьющееся стекло. Оно так прочно, что даже тонкий стеклянный лист нельзя разбить сильным ударом. Тяжелый стальной шар отскочит от него как мячик.
Появится стекло прочнее металла — в стеклянной капсуле можно будет опуститься даже на дно глубочайшей океанской впадины, где давление более тысячи атмосфер.
А ситалл — новый материал, родственник стекла — выдерживает давление, которое не выдерживает сталь. К тому же он не боится кислот и высокой температуры, не растрескается, если его после нагрева опустить в воду.
Из стекла пока что не делают рельсы и станки, но лишь пока… Когда появится ковкое и пластичное стекло, то и это станет возможным.
Стекло с пленочным покрытием, защищающее от солнца, стекло с электропроводящей пленкой, отапливающее помещение…
Большое будущее также и у старого знакомого — кварцевого стекла, чрезвычайно прочного и пропускающего ультрафиолетовые и инфракрасные лучи.
Еще одно применение стекла, о котором не подозревали даже фантасты. Предполагают, что из стекла удастся, возможно, изготовить светопроводы. По каналам из стекловолокна с отражающими стенками будут передавать изображения и даже свет, выработанный мощными генераторами — лазерами. Свет транспортируется, почти не ослабляясь и, конечно, не выходя наружу. Так можно будет со светостанций подавать освещение в дома и на заводы. Более того, свет подберут нужного состава и оттенка — скажем, дневной и вечерний — и централизованно доставят потребителям, которым тогда не понадобятся громоздкие осветительные электроприборы.
Действительность догнала, а во многом и перегнала фантастику об искусственных материалах. Непромокаемые, немнущиеся, сверхпрочные и так далее, и тому подобное… Если говорить об одежде, то теперь ее без химии уже трудно представить. Вот лишь несколько примеров — и известных, и малоизвестных.
Белые рубашки и платья, к которым не пристает грязь, — вместо стирки их надо только прополоскать в воде. Куртки и пальто из заменителей кожи легкие и удобные. И выходная и рабочая одежда, которая отлично защищает от холода. Одежда, в которой можно не бояться огня, воды, кислот и щелочей. Ткань, к которой не пристает никакая грязь, даже масло. Ткань из пустотелого химического волокна, которая согревает не хуже, чем ватная подкладка. Антимикробные костюмы для врачей и медсестер. Лечебное белье для больных. «Складные» плащи, косынки, куртки, береты, тренировочные и даже вечерние костюмы — все это умещается в кармане.
Ткани, окрашенные синтетическими красками, которые придают одежде яркий, нарядный вид. И, наконец, одежда специального назначения, для тех, кто работает на переднем крае науки — атомников, космонавтов, а в недалеком будущем — подводников (гидронавтов).
Химия, и только химия даст полимеры легкие, прочные, стойкие, эластичные, выдерживающие десятки тысяч градусов тепла и холод, близкий к абсолютному нулю; материалы магнитные и полупроводниковые, материалы, меняющие свои свойства.
Армированные пластики, которые будут прочнее металла и легче его по крайней мере в несколько раз, Полимеры-ионообменники, которые будут очищать любые вещества, извлекать ценные элементы из растворов. Полимеры, которые будут сверхпроводниками и при обычной температуре.
Полимерный каучук, полностью заменяющий натуральный, эластичный, но теплостойкий.
Химические волокна не хуже натуральных и дешевле их; волокна негорючие, негниющие, волокна-ионообменники и полупроводники. Пористые полимерные ткани. Химически обработанный, немнущийся хлопок.
Искусственные волокна, которые будут лучше природного асбеста и помогут пустить в оборот запасы бросового каменного сырья. Полимерные краски, стойкие и яркие; разноцветные волокна, которые не надо красить, они окрашены сами по себе, и цветная синтетика.
Химически обработанная негниющая и негорючая древесина.
Полимерные туманы и дымы, защищающие поля и сады от морозов.
Обивочные полимерные покрытия, не боящиеся пыли.
Полупроводники сейчас очень дороги, и они работают пока только в приборах и радиоэлектронной аппаратуре. Полупроводники сейчас — сверхчистые вещества, а добиться сверхвысокой чистоты — труднейшая задача.
Иное дело, если полупроводник полимерный. Более дешевый, потому что сырья для него пока вполне достаточно, потому что получать его оказалось бы проще и сделать из него удастся что угодно — и ткани, и пленки, и волокна, и порошки. Решилась бы проблема мощных преобразователей света и тепла в электроток.
Среди полимерных полупроводников есть и такие, которые могут служить катализаторами. Вот прекрасный материал для стенок химических реакторов! Но живая клетка — тоже реактор. И, создавая искусственные полимеры, мы тем самым делаем шаг к живой природе, учимся у нее и разгадываем ее загадки.
Это — полимеры самого ближайшего будущего. Это заказ, который химия начинает выполнять уже сегодня. И он показывает, что химия действительно сможет удовлетворить самого прихотливого заказчика.
Синтетическая ткань должна быть не только прочной, но и красивой. Синтетические волокна надо окрасить. Дело, казалось бы, несложное: заготовка для полимерных волокон представляет собой расплав, жидкость. Добавить туда краску — что может быть проще?
Однако… Жидкость может быть горячей — значит, краситель должен быть теплостойким. Волокно и краситель — оба детища химии — не должны вредить друг другу. И, наконец, ткань носят, а значит, стирают и гладят.
Если волокно выдерживает все это, должна выдержать и краска. От красителя требуется, кроме того, чтобы он не выцветал на свету и не линял.
Хотя созданы многие тысячи красителей, такого идеального сочетания качеств нет ни в одном. Далеко не для всех искусственных тканей подобраны подходящие красители.
На палитре у художника несколько чистых тонов. Из них он составляет все нужные ему оттенки. А сколько таких основных цветов должно быть в палитре химии? Пока их приходится создавать много.
Но обходятся же полиграфия и цветное кино всего тремя красками — желтой, голубой и пурпурной. Может быть, и для химических волокон хватит той же тройки?
«Если такую идею удастся осуществить, это будет настоящей революцией и в химии красителей, и, главное, в производстве полимерных изделий — красивых, долговечных», — говорит советский химик Е. П. Фокин.
Еще одна задача для создателей полимерного мира.
Сверхпроводящий полимер? Проводник, который проводит ток без потерь, и к тому же при комнатной температуре? Может ли существовать подобное чудо?
Ведь известно, что сверхпроводимость в металлах наступает лишь при сверхнизких температурах. Для электропередач это не годится — линию пришлось бы охлаждать жидким гелием, что на Земле, конечно, совершенно невозможно. Поддерживать глубокий холод удалось бы только в космосе, но там вряд ли понадобилось бы тянуть провода для передачи энергии.
Фантасты до сих пор мечтали лишь об аккумуляторах из сверхпроводников, где запасалась бы электроэнергия от космических гелиостанций. Такой энергосклад можно было бы переправлять на Землю, защитив его жидким гелием.
А теперь химия предлагает иное решение — пригодное для земных нужд. Теория предсказывает возможность создания полимерного сверхпроводящего материала. Он будет сверхпроводником при комнатной, а может быть, и более высокой температуре. Это — реальное будущее, но оно кажется нам теперь столь же удивительным, как мечта фантаста. Каким же оно видится ученым?
Передача энергии без потерь — совсем без потерь! Сверхмощные электромагниты. Электрические машины, работающие практически вечно. Новые совершенные ускорители частиц и счетно-вычислительные устройства. Это пока не слишком удивляет. А дальше?
Сверхпроводниковые электромагниты будут парить на своеобразной подушке, образованной магнитным полем. «Пассажиры и груз проносятся без трения над дорогой со сверхпроводящим покрытием, как на ковре-самолете; или представим себе катание на магнитных лыжах по сверхпроводящим склонам…» Такую картинку рисует американский физик профессор А. Литтл.
Очень многого ждет от химии космонавтика.
Вот заметка о настоящем; она рассказывает о том, что есть уже сегодня.
В пакете — порошок. По обеим сторонам его — горючие слои. Их поджигают, и материал начинает вспучиваться от тепла, и вырастает… палатка или домик.
Не наводит ли она на размышления о будущем — о домах, которые растут на наших глазах «сами по себе»?
Подобные дома могли бы найти применение при возведении построек на Луне. Конструкцию их пришлось бы сделать несколько иной. Заготовкой послужила бы ткань, пропитанная синтетической смолой. Она мягкая, и ее легко уложить в пакет. Если затем пустить раздувающий газ, то дом примет нужную форму, скажем, шара. А далее газообразный же катализатор заставит смолу превратиться в твердый полимер.
- Из чего всё сделано? Рассказы о веществе - Любовь Николаевна Стрельникова - Детская образовательная литература / Химия
- Сборник основных формул школьного курса химии - Г. Логинова - Химия
- Краткая история химии. Развитие идей и представлений в химии - Айзек Азимов - Химия