Шрифт:
Интервал:
Закладка:
Понимая важность изучения столь мощных явлений, астрономы В. Бааде и Ф. Цвикки, работавшие на Паломарской обсерватории в США, в 1936 году начали планомерный систематический поиск сверхновых. В их распоряжении был телескоп системы Шмидта, позволявший фотографировать области в несколько десятков квадратных градусов и дававший очень четкие изображения даже слабых звезд и галактик. За три года в разных галактиках ими были обнаружены 12 вспышек сверхновых, которые затем исследовались с помощью фотометрии и спектроскопии. По мере совершенствования наблюдательной техники количество вновь обнаруженных сверхновых неуклонно возрастало, а последующее внедрение автоматизированного поиска привело к лавинообразному росту числа открытий (более 100 сверхновых в год при общем количестве — 1 500). В последние годы на крупных телескопах был начат также поиск очень далеких и слабых сверхновых, так как их исследования могут дать ответы на многие вопросы о строении и судьбе всей Вселенной. За одну ночь наблюдений на таких телескопах можно открыть более 10 далеких сверхновых.
В результате взрыва звезды, который наблюдается как явление сверхновой, вокруг нее образуется туманность, расширяющаяся с огромной скоростью (порядка 10000 км/с). Большая скорость расширения — главный признак, по которому остатки вспышек сверхновых отличают от других туманностей. В остатках сверхновых все говорит о взрыве огромной мощности, разметавшем наружные слои звезды и сообщившем отдельным кускам выброшенной оболочки огромные скорости.
Крабовидная туманностьНи один космический объект не дал астрономам столько ценнейшей информации, как относительно небольшая Крабовидная туманность, наблюдаемая в созвездии Тельца и состоящая из газового диффузного вещества, разлетающегося с большой скоростью. Эта туманность, являющаяся остатком сверхновой, наблюдавшейся в 1054 году, стала первым галактическим объектом, с которым был отождествлен источник радиоизлучения. Оказалось, что характер радиоизлучения ничего общего с тепловым не имеет: его интенсивность систематически возрастает с длиной волны. Вскоре удалось объяснить и природу этого явления. В остатке сверхновой должно быть сильное магнитное поле, которое удерживает созданные ею космические лучи (электроны, позитроны, атомные ядра), имеющие скорости, близкие к скорости света. В магнитном поле они излучают электромагнитную энергию узким пучком в направлении движения. Обнаружение нетеплового радиоизлучения у Крабовидной туманности подтолкнуло астрономов к поиску остатков сверхновых именно по этому признаку.
Особенно мощным источником радиоизлучения оказалась туманность, находящаяся в созвездии Кассиопеи, — на метровых волнах поток радиоизлучения от нее в 10 раз превышает поток от Крабовидной туманности, хотя она и значительно дальше последней. В оптических же лучах эта быстро расширяющаяся туманность очень слаба. Полагают, что туманность в Кассиопее — это остаток вспышки сверхновой, имевшей место около 300 лет назад.
Характерное для старых остатков сверхновых радиоизлучение показала и система волокнистых туманностей в созвездии Лебедя. Радиоастрономия помогла отыскать еще много других нетепловых радиоисточников, которые оказались остатками сверхновых разного возраста. Таким образом, был сделан вывод, что остатки вспышек сверхновых, случившихся даже десятки тысяч лет назад, выделяются среди других туманностей своим мощным нетепловым радиоизлучением.
Как уже говорилось, Крабовидная туманность стала первым объектом, у которого было обнаружено рентгеновское излучение. В 1964 году удалось обнаружить, что источник рентгеновского излучения, исходящего из нее, протяженный, хотя его угловые размеры в 5 раз меньше угловых размеров самой Крабовидной туманности. Из чего был сделан вывод, что рентгеновское излучение испускает не звезда, некогда вспыхнувшая как сверхновая, а сама туманность.
Влияние сверхновых23 февраля 1987 года в соседней с нами галактике — Большом Магеллановом Облаке — вспыхнула сверхновая, ставшая чрезвычайно важной для астрономов, поскольку была первой, которую они, вооружившись современными астрономическими инструментами, могли изучить в деталях. И эта звезда дала подтверждение целой серии предсказаний. Одновременно с оптической вспышкой специальные детекторы, установленные на территории Японии и в штате Огайо (США), зарегистрировали поток нейтрино — элементарных частиц, рождающихся при очень высоких температурах в процессе коллапса ядра звезды и легко проникающих сквозь ее оболочку. Эти наблюдения подтвердили ранее высказанное предположение о том, что около 10% массы коллапсирующего ядра звезды излучается в виде нейтрино в тот момент, когда само ядро сжимается в нейтронную звезду. У очень массивных звезд при вспышке сверхновой ядра сжимаются до еще больших плотностей и, вероятно, превращаются в черные дыры, но сброс внешних слоев звезды все же происходит. В последние годы появились указания на связь некоторых космических гамма-всплесков со сверхновыми. Возможно, и природа космических гамма-всплесков связана с природой взрывов.
Вспышки сверхновых оказывают сильное и многообразное влияние на окружающую межзвездную среду. Сбрасываемая с огромной скоростью оболочка сверхновой сгребает и сжимает окружающий ее газ, что может дать толчок к образованию из облаков газа новых звезд. Группа астрономов во главе с доктором Джоном Хьюгесом (Rutgers University), используя наблюдения на орбитальной рентгеновской обсерватории «Чандра» (NASA), сделала важное открытие, проливающее свет на то, как при вспышках сверхновой звезды образуются кремний, железо и другие элементы. Рентгеновское изображение остатка сверхновой Cassiopeia А (Cas A) позволяет увидеть сгустки кремния, серы и железа, выброшенные при взрыве из внутренних областей звезды.
Высокое качество, четкость и информативность получаемых обсерваторией «Чандра» изображений остатка сверхновой Cas A позволили астрономам не только определить химический состав многих узлов этого остатка, но и узнать, где именно эти узлы образовались. Например, самые компактные и яркие узлы состоят главным образом из кремния и серы с очень малым содержанием железа. Это указывает на то, что они образовались глубоко внутри звезды, где температура достигала трех миллиардов градусов во время коллапса, закончившегося взрывом сверхновой. В других узлах астрономы обнаружили очень большое содержание железа с примесями некоторого количества кремния и серы. Это вещество образовалось еще глубже — в тех частях, где температура во время взрыва достигала более высоких значений — от четырех до пяти миллиардов градусов. Сравнение расположений в остатке сверхновой Cas A богатых кремнием как ярких, так и более слабых узлов, обогащенных железом, позволило обнаружить, что «железные» детали, происходящие из самых глубоких слоев звезды, располагаются на внешних краях остатка. Это означает, что взрыв выбросил «железные» узлы дальше всех остальных. И даже сейчас они, по-видимому, удаляются от центра взрыва с большей скоростью. Изучение полученных «Чандрой» данных позволит остановиться на одном из нескольких предложенных теоретиками механизмов, объясняющих природу вспышки сверхновой, динамику процесса и происхождение новых элементов.
Сверхновые SN I имеют весьма сходные спектры (с отсутствием водородных линий) и формы кривых блеска, в то время как спектры SN II содержат яркие линии водорода и отличаются разнообразием как спектров, так и кривых блеска. В таком виде классификация сверхновых существовала до середины 80-х годов прошлого столетия. А с началом широкого применения ПЗС-приемников количество и качество наблюдательного материала существенно возросли, что позволило получать спектрограммы для недоступных прежде слабых объектов, с гораздо большей точностью определять интенсивность и ширину линий, а также регистрировать в спектрах более слабые линии. В результате казавшаяся установившейся двоичная классификация сверхновых стала быстро изменяться и усложняться.
Различаются сверхновые и по типам галактик, в которых они вспыхивают. В спиральных галактиках вспыхивают сверхновые обоих типов, а вот в эллиптических, где почти нет межзвездной среды и процесс звездообразования закончился, наблюдаются только сверхновые типа SN I, очевидно, до взрыва — это очень старые звезды, массы которых близки к солнечной. А так как спектры и кривые блеска сверхновых этого типа очень похожи, то, значит, и в спиральных галактиках взрываются такие же звезды. Закономерный конец эволюционного пути звезд с массами, близкими к солнечной, — превращение в белого карлика с одновременным образованием планетарной туманности. В составе белого карлика почти нет водорода, поскольку он является конечным продуктом эволюции нормальной звезды.
- Журнал "Вокруг Света" №2 за 2001 год - Вокруг Света - Прочая документальная литература
- Журнал "Вокруг Света" №8 за 2001 год - Вокруг Света - Прочая документальная литература
- Журнал "Вокруг Света" №3 за 1998 год - Вокруг Света - Прочая документальная литература