Читать интересную книгу Власть роботов. Как подготовиться к неизбежному - Мартин Форд

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 3 4 5 6 7 8 9 10 11 ... 73
других крупнейших компьютерных платформах. Я руководил маленькой компанией, разрабатывавшей программное обеспечение в Кремниевой долине в 1990-х годах, когда Microsoft Windows стала господствующей платформой для персональных компьютеров. Первоначально создание приложений для Windows было уделом квалифицированных специалистов, которые использовали язык программирования Си и руководства объемом 1000 страниц, понятные лишь посвященным. Появление более простых в применении средств, включая чрезвычайно доступные среды разработки, такие как Visual Basic от Microsoft, резко увеличило число людей, способных писать программы для Windows, и быстро привело к взрывному росту количества приложений. Аналогично развивались мобильные вычисления, и теперь как App Store компании Apple, так и Android Play Store предлагают, кажется, бесчисленное множество приложений, удовлетворяющих практически любую мыслимую потребность. Такой же взрыв, скорее всего, произойдет и в области искусственного интеллекта, а именно глубокого обучения. В обозримом будущем ИИ превратится в новое электричество благодаря постоянному расширению круга специальных приложений, а не появлению универсального машинного интеллекта.

Взаимосвязанный мир и интернет вещей

Последний элемент пазла «искусственный интеллект как новое электричество» — это кардинально улучшенное сетевое взаимодействие. Его главной движущей силой должно стать внедрение беспроводной связи пятого поколения (5G) в ближайшие годы. Как ожидается, 5G увеличит скорость передачи мобильных данных в десять, а может, и в 100 раз, одновременно повысив пропускную способность сети так, что исчезнут почти все узкие места[28]. Это неизбежно усилит сетевое взаимодействие, и коммуникация станет почти мгновенной. Представьте, что практически всё — включая устройства, электротехнику, транспортные средства, промышленное оборудование и огромное множество других элементов нашей физической инфраструктуры — будет взаимосвязано и находиться под контролем умных алгоритмов в облаке. Эта концепция будущего — так называемый интернет вещей — скоро будет реализована, и мы окажемся в мире, где, например, сенсоры в вашем холодильнике или в любом другом месте кухни смогут определить, что у вас почти закончился определенный продукт, и передать эту информацию алгоритму, который уведомит вас или даже автоматически сделает соответствующий онлайновый заказ. Если холодильник работает неоптимально, другой алгоритм решит эту проблему автоматически или удаленно. Деталь, которая вот-вот откажет, будет выявлена и отмечена как требующая замены. Распространение этой модели на всю нашу экономику и общественную жизнь невероятно повысит эффективность, поскольку машины, системы и инфраструктура будут автоматически выявлять и во многих случаях решать проблемы по мере их возникновения. Интернет вещей во многом будет похож на облачные дата-центры, сверхэффективно управляемые алгоритмами, только масштабы станут глобальными. Это, однако, несет с собой совершенно реальные риски, особенно в сферах безопасности и защиты персональных данных. Мы сосредоточимся на этих принципиальных вопросах в главе 8.

Все более взаимосвязанный мир превратится в мощную платформу доступа к искусственному интеллекту. В обозримом будущем самые важные ИИ-приложения будут находиться в облаке, но со временем машинный интеллект станет более распределенным. Устройства, машины и инфраструктура будут умнеть по мере применения новейших специализированных чипов, поддерживающих ИИ. Скорее всего, именно здесь такие инновации, как нейроморфные вычисления, окажутся наиболее востребованными. В результате появится мощная новая служба, способная предоставить доступ к машинному интеллекту по запросу практически где угодно.

Источник стоимости — данные

Поскольку ведущие облачные провайдеры конкурируют как в ценах, так и в возможностях своей технологии, удешевление доступа к аппаратным и программным средствам, поддерживающим искусственный интеллект, представляется неизбежным. В то же время продолжится совершенствование ИИ-сервисов, доступных через облако, поскольку технологические гиганты стремятся добиться конкурентного преимущества, осваивая новейшие открытия исследователей. Под влиянием этих процессов даже самые продвинутые ИИ-технологии будут постепенно превращаться в товар широкого потребления, доступ к которому почти, а то и вовсе не требует платы, помимо той, которую клиенты облачных сервисов вносят за хранение своих данных. Свидетельства этого уже имеются. Такие компании, как Google, Facebook и Baidu, выпускают программное обеспечение для глубокого обучения с открытым исходным кодом. Иными словами, они предлагают его бесплатно. Это относится и к большинству самых передовых исследований, проводимых организациями вроде DeepMind и OpenAI. Они публикуют свои результаты в ведущих научных журналах и позволяют любому человеку получить подробные данные о разрабатываемых системах глубокого обучения.

Кое-чем, однако, ни одна компания не делится бесплатно — своими данными. Вследствие этого синергия между ИИ-технологией и огромными объемами потребляемых ею данных довольно-таки однобока. Практически вся создаваемая стоимость достается тому, кто владеет данными. Из этого широко признанного объективного факта часто делают вывод, что технологические гиганты подомнут под себя любую область деятельности, нуждающуюся в больших данных или искусственном интеллекте. Однако при этом из виду упускается то, что собственность на данные имеет явную вертикальную отраслевую структуру. Такие компании, как Google, Facebook и Amazon, разумеется, контролируют невообразимые объемы данных, но их деятельность в общем ограничивается интернет-поиском, взаимодействием в соцсетях и транзакциями в онлайновых магазинах. В данных областях эти компании, скорее всего, сохранят господство, но в экономике и в обществе имеется намного больше данных совершенно иных типов, принадлежащих правительствам, организациям и частным компаниям из других отраслей.

Часто говорят, что данные — это новая нефть. Если мы принимаем эту аналогию, то можем во многих отношениях уподобить технологические компании фирме Halliburton, которая предлагает свои технологические возможности и практические знания, необходимые для того, чтобы извлекать стоимость из ресурса. Конечно, гиганты сферы хай-тека имеют собственные огромные массивы данных, однако львиная доля непрерывно растущего глобального источника данных принадлежит не им. Например, компании медицинского страхования, больничные сети и, разумеется, государственные общенациональные службы здравоохранения владеют данными неимоверной ценности. Можно с уверенностью утверждать, что они будут использовать новейшие ИИ-технологии, разработанные крупными технологическими компаниями и предоставляемые как облачный сервис, но сохранят стоимость, извлеченную из данных, в своих руках. То же самое можно сказать об огромных массивах данных, собранных в ходе финансовых операций, бронирования билетов, размещения отзывов в интернете, наблюдения за перемещениями покупателей в традиционных розничных магазинах, а также сгенерированных бесчисленными сенсорами в транспортных средствах и промышленном оборудовании. В каждом случае машинный интеллект будет работать с конкретными данными, принадлежащими организациям из разных отраслей экономики.

Из этого следует, что значительная часть стоимости, извлекаемой благодаря использованию искусственного интеллекта, будет доставаться не компаниям-лидерам из сферы высоких технологий. Колоссальная выгода от применения ИИ будет распределяться очень широко. Опять-таки здесь уместна аналогия с электричеством. Кто извлекает наибольшую стоимость из электричества? Электроэнергетические компании? Атомная энергетика? Нет, такие компании, как Google и Facebook, потребляющие очень много электроэнергии и открывшие способы преобразования этого общедоступного товара широкого потребления в фантастическую стоимость. Разумеется, эта аналогия не идеальна, и не приходится сомневаться, что колоссальная стоимость и огромные возможности достанутся тем

1 ... 3 4 5 6 7 8 9 10 11 ... 73
На этом сайте Вы можете читать книги онлайн бесплатно русская версия Власть роботов. Как подготовиться к неизбежному - Мартин Форд.
Книги, аналогичгные Власть роботов. Как подготовиться к неизбежному - Мартин Форд

Оставить комментарий