Шрифт:
Интервал:
Закладка:
Таковы механизмы распространения веры в сверхъестественные явления. Подобным образом возникают и антинаучные утверждения, питающие лженауку.
Но даже хороший эксперимент устанавливает только факты. Науку же составляют не только факты, но и соотношения между ними, а главное, систематизация этих соотношений с помощью сознательно упрощенной модели явления. Лишь после того как возникает стройная система представлений - теория, - возможно предсказание новых явлений. А для создания теории необходим не меньший профессионализм, чем для постановки научного эксперимента.
Как создаются теории
Опытные науки развиваются с помощью правдоподобных предположений, которые предстоит проверить.
Приятель Винни-Пуха поросенок Пятачок так рассуждает перед охотой на неизвестного зверя Слонопотама: «А идет ли Слонопотам на свист? И если идет, то зачем? И любит ли он поросят? И как он их любит?»
Так осмысливаются факты. С этого начинается тео-
рия. Великий французский математик Анри Пуанкаре сравнивал собрание разрозненных фактов с грудой камней, из которых предстоит построить здание. Чтобы получить возможность предсказывать, из фактов нужно вывести упрощенную модель, или теорию, явления. Затем эту модель надо подвергнуть жестокой проверке, испытать ее на прочность, как гнут палку, пока та не сломается. Когда модель наконец не выдержит проверки, нужно попытаться построить новую теорию, учитывая и те факты, которые были раньше, и те, которые появились в ходе проверки.
Когда оказывается, что убедительно построенная теория противоречит вновь появившимся данным, происходит скачок в развитии науки. И экспериментаторы должны не только испытывать теорию, но и искать противоречащие ей факты.
Это так же эффективно, как выметать лужи метлой, по обычаю дворников. И хотя вода проходит между прутьями, после нескольких взмахов от лужи не остается и следа.
Как рождаются и развиваются теории? Вот история одной из них - закона всемирного тяготения.
Идея о том, что сила, заставляющая планеты двигаться вокруг Солнца и яблоко - падать с дерева, имеет одну и ту же природу, высказывалась многими учеными и философами. Легенда об упавшем яблоке, которое навело Ньютона на идею об универсальности тяготения, наивна - эта идея в то время повторялась на все лады. За много лет до Ньютона Иоганн Кеплер пытался доказать, что планеты движутся не по прямой, а по эллипсам под действием силы притяжения Солнца.
Почему же закон всемирного тяготения называют «законом Ньютона»? Справедливо ли это?
Любая общая идея приобретает ценность, только если она подтверждена научными доводами, и честь открытия принадлежит тем, кто способствовал превращению этой идеи в доказанную истину. Как часто об этом забывают изобретатели общих идей!
В поэтических и туманных образах древних сказаний можно усмотреть идею расширяющейся Вселенной, научно обоснованную в XX веке н блестяще подтвердившуюся с открытием реликтового излучения. Имела ли эта идея какую-либо научную ценность, повлияла ли она на создание теории тяготения Эйнштейна? Разумеется, нет. В море смутных и случайных утверждений всегда можно выловить нечто, подтвердившееся дальнейшим развитием науки.
Ньютон был первым, кто превратил общую идею всемирного тяготения в физическую теорию, подтвержденную опытом.
В чем состояла задача? Надо было объяснить, почему планеты движутся по эллипсам с фокусом в месте нахождения Солнца и почему кубы радиусов орбит пропорциональны квадратам периодов обращения. Эти соотношения - «законы Кеплера» - были найдены из анализа астрономических наблюдений и оставались без объяснения много лет. Ньютон доказал, что эти законы следуют из предположения, что между двумя массами действует сила, пропорциональная произведению масс и обратно пропорциональная квадрату расстояния между телами.
Но и после введения силы тяготения нужно было преодолеть колоссальные по тому времени математические трудности, чтобы получить количественное объяснение движения планет.
Помимо эллиптического движения планет, теория объяснила и слабые отклонения от этого закона, вызван-
ные влиянием соседних небесных тел. Ньютон вычислил возмущения движения Луны под влиянием Солнца и построил теорию приливов, которые он объяснил лунным притяжением.
Ньютону пришлось предположить, что законы механики, найденные Галилеем для тел малой массы, движущихся с малыми скоростями, применимы и для небесных тел. Эта гипотеза с огромной точностью подтвердилась сравнением многочисленных предсказаний теории тяготения с опытом.
В 1687 году вышла книга Ньютона «Математические начала натуральной философии». Это событие можно считать началом теоретической физики.
Ньютон, как и многие другие ученые того времени, безуспешно пытался объяснить тяготение движениями эфира. Но эти попытки были обречены на неудачу - понадобилось более 200 лет развития физики и математики, чтобы стало возможным создание теории Эйнштейна, связавшей тяготение с геометрическими свойствами пространства. Согласно этой теории законы обычной механики нарушаются вблизи массивных тел и при больших скоростях. Одно из предсказаний новой теории тяготения мы уже обсуждали - это вращение орбиты Меркурия. Были подтверждены на опыте и многие другие следствия теории.
Выбор направления
Законы в опытных науках в отличие от математики справедливы с той или иной вероятностью и с той или иной точностью. Если соотношение хорошо проверено на опыте, вероятность заметного отклонения от него ничтожно мала, и мы можем считать закон достоверным. Мы всегда понимаем достоверное как справедливое с вероятностью, близкой к единице.
Когда мы говорим, что хорошо установленная истина отличима от заблуждения, можно было бы добавлять: «с подавляющей вероятностью». Но приходилось бы делать это слишком часто. Говоря: «завтра наступит день», надо было бы добавить: «…если, конечно, Земля не столкнется с небесным телом или не будет взорвана инопланетянами, которых в последнее время многовато развелось». Вероятность того, что паровоз подпрыгнет и сойдет с рельсов в результате согласованных ударов молекул, сравнима с вероятностью подпрыгнувшего стакана, о которой говорил Смолуховский, - мы не считаемся с этим и спокойно садимся в вагон.
Здравый смысл, которым мы пользуемся в практической жизни, руководствуется разумной оценкой вероятности того или иного события.
Наш «психологический компьютер» - интуиция - мгновенно учитывает все возможные мотивы, условия и последствия действия. Прежде чем погладить незнакомую собаку, мы оцениваем ее настроение, рост и вес, смотрим, торчат или висят ее уши, виляет ли она хвостом или держится настороженно, действуем далее в соответствии с оценкой, и опасность быть покусанным составляет лишь 10-20 процентов.
Увидев в темной подворотне подозрительную личность, нетвердо стоящую на ногах, мы снова производим мгновенную операцию, учитываем, насколько глубоко он погружен в размышления, как держит равновесие; при определенном навыке можно даже оценить, что именно он пил - шампянское или сомнительный напиток под названием «Золотая осень», - потом мы ищем другую дорогу или спокойно проходим мимо.
Придя на рынок и увидев продавца, небрежно манипулирующего гирями и кривыми тарелками видавших виды весов, следует сделать хотя бы самую грубую оценку веса и стоимости покупки.
В одном случае «компьютер» спасает нам жизнь, в другом - уберегает от невыгодных поступков.
Здравый смысл и интуиция определяют выбор направления поисков. Прежде чем разрывать навозную кучу, надо оценить, сколько на это уйдет времени и какова вероятность того, что там есть жемчужина. Именно поэтому так мало серьезных ученых, занимающихся поисками крайне неожиданных явлений вроде телепатии. Неразумно прилагать большие усилия, если согласно интуитивной оценке вероятность удачи ничтожно мала. Ведь пока нет сколько-нибудь убедительных для ученого теоретических или экспериментальных указаний на само существование телепатии. Зато после первого же научного результата в эту область устремились бы громадные силы. Так и должна развиваться наука. Мы сознательно проходим мимо мест, где, может быть, и можно найти клад, и направляемся туда, где вероятность найти его, по нашей оценке, наибольшая. Иначе не хватит сил на продвижение вперед.
Интуитивная оценка вероятности успеха всегда субъективна и требует научного опыта. К сожалению, ничего лучшего для выбора разумного направления поисков, чем научные конференции, семинары и обсуждения со специалистами, придумать пока не удалось.
Вот краткое заключение наших рассуждений о научном методе исследования: схема научного познания выглядит так: эксперимент, правдоподобные предположения, гипотезы, теория - эксперимент - уточнение, проверка границ применимости теории, возникновение парадоксов, теория, интуиция, озарение - скачок - новые гипотезы и новая теория - и снова эксперимент-Научный метод, в основе которого лежит объективность, воспроизводимость, открытость новому, - великое завоевание человеческого разума. Этот метод развивался и совершенствовался и был отобран как самый рациональный - из требования минимума потерь времени и идей. Уже более трех веков наука руководствуется им, и при этом ничего не было загублено.
- Физика элементарных частиц материи - Владимир Голощапов - Физика
- Физика пространства - Анатолий Трутнев - Физика
- Это всё квантовая физика! Непочтительное руководство по фундаментальной природе всего - Жереми Харрис - Зарубежная образовательная литература / Физика