Шрифт:
Интервал:
Закладка:
Почвенный покров изображают на почвенных картах в разных масштабах. Каждый из масштабов (детальный, крупный, средний, мелкий или обзорный) позволяет отразить одну из закономерностей строения почвенного покрова, т. е. один из уровней иерархии СПП. Самые детальные почвенные карты, на которых представлены только ЭПА, отражают реальное строение почвенного покрова. Во всех остальных случаях на почвенных картах изображён генерализованный в разной степени почвенный покров.
На базе карт почв составляют тематические карты, отражающие отдельные особенности почв планеты: засоление, эродированность, распаханность, обеспеченность питательными элементами, загрязнённость, плодородие, характер использования под различные с.-х. культуры и т. д.
География почв отвечает за количественный и качественный учёт почвенных ресурсов мира, исследует глобальные проблемы деградации почвенного покрова и его экологическую значимость для человека на современном этапе активного антропогенного и техногенного преобразования почвенного покрова.
ГЕОГРÁФИЯ ПРОМЫ́ШЛЕННОСТИ, отрасль социально-экономической географии, изучающая территориальную структуру промышленного производства, закономерности и пространственные особенности развития промышленности в целом, групп отраслей, отдельных отраслей и производств – на локальном, районном, национальном, межнациональном (региональном) и глобальном уровнях. Общая география промышленности исследует общие закономерности формирования и развития территориальной структуры промышленности, место промышленности в международном (географическом) разделении труда, её положение среди других отраслей общественного производства, вопросы промышленного районирования, формирование территориальных сочетаний промышленности (в т. ч. промышленных агломераций) разного типа и масштаба, территориальную структуру деятельности частных и гос. промышленных корпораций, влияние промышленности на окружающую среду и т. п. Региональная география промышленности изучает промышленное производство в целом в составе таксономических единиц различного ранга (промышленных центров, узлов, агломераций, административно-территориальных единиц, р-нов, стран и их группировок). География отраслей промышленности исследует гл. обр. факторы размещения (природные, технико-экономические, организационные, социальные и др.) и территориальную структуру отдельных отраслей и их группировок. Для неё характерен широкий территориальный охват (мир в целом, крупные регионы, страны, крупные экономические р-ны).
ГЕОГРÁФИЯ СÉЛЬСКОГО ХОЗЯ́ЙСТВА, отрасль социально-экономической географии, изучающая закономерности и особенности территориальной дифференциации сельскохозяйственного производства (природные и социально-экономические факторы его размещения, условия и специфику развития в различных странах и районах, типологию и сельскохозяйственное районирование различных территорий, размещение отдельных отраслей сельского хозяйства, взаимосвязи с другими компонентами аграрно-промышленного комплекса).
ГЕОГРÁФИЯ СФÉРЫ УСЛУ́Г,отрасль социально-экономической географии, изучающая закономерности и особенности развития территориальной структуры третичного сектора экономики – непроизводственной сферы, или сферы услуг, – в разных странах и регионах, в различных природных, социально-экономических и демографических условиях, при разных формах расселения и как компонент социальной инфраструктуры.
ГЕОГРÁФИЯ ТРÁНСПОРТА, отрасль социально-экономической географии, изучающая территориальную структуру транспорта, закономерности и особенности его размещения, степень транспортной обеспеченности территорий. Общая география транспорта исследует закономерности размещения транспортных линий и узлов, формирование транспортных сетей, грузо– и пассажиропотоки, взаимодействие транспорта с др. отраслями и расселением населения, взаимодействие видов транспорта в пределах одной территории, роль транспорта в формировании экономических р-нов, вопросы районирования транспорта. Отраслевая география транспорта исследует специфику территориальной организации отдельных видов транспорта: автомобильного, ж.-д., водного, воздушного, трубопроводного. Региональная география транспорта изучает взаимодействие различных видов транспорта на определённой территории, степень её транспортной обеспеченности.
ГЕОДЕЗИ́ЧЕСКИЕ ПРИБÓРЫ, механические, оптико-механические, электронные и радиоэлектронные приборы, используемые для измерения на местности длин линий, углов и высот (превышений). Применяются при создании астрономо-геодезических сетей, при топографических съёмках, нивелировании, инженерно-строительных, горных и др. работах.
Одна из ранних конструкций теодолита
Для измерения длин используют стальные мерные ленты и высокоточные свето-, радио-, акустические дальномеры разных конструкций, позволяющие измерять длины от нескольких десятков метров до десятков километров. Принцип определения расстояния прост, он основан на измерении времени прохождения световых, радио– или звуковых волн от дальномера до измеряемого объекта и обратно. При этом погрешность не превышает тысячных долей измеряемого расстояния. Тот же принцип используется и в радиовысотомерах, установленных на летательных аппаратах.
Современный электронный теодолит
Угломерные приборы – оптические и электронные теодолиты – позволяют определять вертикальные и горизонтальные углы на местности с точностью до нескольких секунд. При наземных фототопографических съёмках широко используют фототеодолиты, сочетающие теодолит с фотокамерой. Обработка фототеодолитных снимков на специальных стереофотограмметрических приборах даёт объёмные стереомодели местности, используемые для составления топографических карт.
Спутниковый приёмник для определения координат точки стояния
Для топографической съёмки местности применяют мензулу (чертёжный планшет, укреплённый на треноге) и кипрегель – прибор для прочерчивания направлений и измерения расстояний и превышений. С их помощью прямо в поле определяют положение и высоту характерных точек местности, наносят их на планшет и сразу вычерчивают топографическую карту в принятых условных знаках.
Для геометрического нивелирования (определения разности высот) используют нивелиры (оптические приборы с горизонтальной визирной осью) и специальные нивелирные рейки. С их помощью передают высоты от начальной точки трассы нивелирования на следующую точку (пикет) – и так далее, с пикета на пикет, вдоль всей трассы.
Современная тенденция развития геодезического приборостроения – переход на электронные системы, обеспечивающие высокоточные измерения и фиксацию результатов в цифровой форме прямо в ходе полевой съёмки. Это удобно для компьютерной обработки данных и автоматического построения топографических карт, планов, профилей и т. п.
Подлинная революция в геодезии связана с появлением глобальных систем позиционирования (ГСП), опирающихся на спутниковые измерения. ГСП позволяют определять координаты и высоты пунктов посредством системы искусственных спутников, постоянно находящихся над Землёй. ГСП, расположенная в какой-либо точке, одновременно измеряет расстояния до четырёх или более искусственных спутников Земли. Делается это с помощью электронных приёмников, получающих специальные радиосигналы от спутников; тем самым ГСП как бы засекает своё положение на местности. Т. обр., координаты и высоты любого пункта не надо передавать от других пунктов геодезической сети, их можно определить автономно. Полученные данные быстро обрабатывают на портативных компьютерах. Это обеспечивает высокую оперативность и экономичность геодезических работ даже в труднодоступной местности, построение геодезических сетей, картографирование всех видов, привязку аэро– и космических снимков, ведение инженерно-строительных работ, навигацию и т. п.
ГЕОДÉЗИЯ, наука, изучающая форму, размеры и гравитационное поле Земли, а также технические средства и методы измерений на местности.
Геодезия зародилась в странах Древнего Востока и в Египте, где задолго до н. э. были известны методы измерения земельных участков и проектирования крупных инженерных и архитектурных сооружений – плотин, храмов, пирамид. В античной Греции, напр., использовали методы определения размеров Земли. Расцвет геодезии в Европе связан с применением магнитного компаса, изобретением в кон. 16 в. инструментов со зрительными трубами. В России научные геодезические работы начались в 17–18 вв. и были связаны с освоением новых территорий, строительством промышленных и горнодобывающих предприятий, развитием мореплавания и военного дела. Особенно быстро съёмочные работы стали развиваться в cep. 19 в. в связи с деятельностью Корпуса военных топографов и проведением межевания земель на огромных пространствах европейской части страны. Немалая заслуга в научном обосновании геодезических работ принадлежит знаменитому русскому астроному и геодезисту, основателю и первому директору Пулковской обсерватории В. Я. Струве.