Наряду с этим вновь появились старые представления о непрерывности и вечности жизни, также вооруженные новейшими достижениями в области биологии, астрономии и физики.
2.1.3. Теории вечности жизни
Теории вечности жизни в современном виде возникли почти одновременно с появлением работ Л. Пастера и на первый взгляд являются логическим выводом из последних.
Одной из первых подобных теорий следует признать теорию панспермии, в основной своей форме провозглашенную немецким ученым Г. Рихтером в 1865 г. Согласно теории Рихтера, жизнь на Земле не возникала из неорганических веществ, а была занесена с других планет. В связи с этим естественно возникал вопрос о том, насколько возможно такое перенесение жизни с одной планеты на другую через огромные пространства, их разделяющие. Доводы в пользу возможности такого хода событий черпались в области физики, и неудивительно поэтому, что защитниками этой теории явились в первую очередь представители этой науки, выдающиеся ученые Г. Гельмгольц, В. Томсон, С. Аррениус, П. Лазарев и др.
Вопрос сводился к двум основным пунктам: при помощи каких сил может происходить перенос зародышей жизни с одной планеты на другую и могут ли эти зародыши сохранять жизнеспособность во время путешествия по космическому пространству?
Согласно представлениям Томсона и Гельмгольца, споры бактерий и других микроорганизмов могли быть занесены на Землю с метеоритами. Современные же сторонники теории панспермии полагают, что основная масса органических веществ, явившихся материалом, из которого возникали живые существа, доставлена на планету с метеоритами.
Лабораторные исследования вскоре продемонстрировали высокую устойчивость живых организмов к неблагоприятным воздействиям. Например, длительное выдерживание спор и семян растений в жидком кислороде или азоте удавалось без нарушения их жизнеспособности.
Теория панспермии не может, однако, служить для разрешения вопроса о происхождении жизни, она лишь пытается объяснить появление жизни на Земле, но не ее первичное возникновение. В этом смысле она только отодвигает проблему, не разрешая ее. Развитием подобных представлений можно считать теории вечности жизни, одна из которых выдвинута немецким ученым В. Прейером в 1880 г. и нашедшая отклик со стороны академика В. И. Вернадского, автора учения о биосфере.
По Прейеру, проблемы происхождения жизни вообще нет. Он рассматривает жизнь как существующую вечно. Более того, он ставит вопрос о происхождении неживого из живого, ему предшествовавшего во времени. Соответственно этому ученый рассматривал раскаленные массы формировавшегося земного шара как гигантские живые организмы со своим особым обменом веществ. По мере остывания Земли эти массы распадались на части, которые не могли вновь слиться и поэтому выпадали из жизненного круговорота. Они-то и составляли неорганическую природу.
2.1.4. Материалистические теории происхождения жизни
Проблема происхождения жизни для теорий вечности жизни не существует по той простой причине, что эти теории стирают различия, существующие между живым и неживым. Поскольку эти теории исходят из единства комплекса живое – неживое, для них не существует и вопроса о происхождении одного от другого. Совсем иначе обстоит дело, если принять наличие специфических различий между живой и неживой материей – в этом случае сам собой возникает вопрос о возникновении этих различий. Разрешение настоящего вопроса, естественно, неразрывно связано с теми представлениями, которые существуют о природе различий между неживой материей и живыми организмами.
Правильная постановка этого вопроса стала возможной лишь после исследований Л. Пастера и в связи с расширением и углублением самого понятия живого. Особенное значение в истории проблемы имела теория немецкого ученого Э. Пфлюгера(1875).
Вопрос о происхождении жизни для Пфлюгера, как и для современных ученых, сводился к вопросу о происхождении белковых веществ и о той внутренней их организации, которая составляет характерное отличие белков живой «протоплазмы». Автор соответственно разбирает различия между «живым» и «мертвым» белком, из которых основное заключается в неустойчивости «живого» белка, его способности к изменениям в отличие от инертного «мертвого» белка. Эти свойства «живого» белка во времена Пфлюгера приписывали наличию в молекуле белка кислорода. Это воззрение в настоящее время считается устаревшим. Из других представлений о различиях между «живым» и «мертвым» белком ученый останавливается на содержании в молекуле «живого» белка группы циана (CN), и соответственно этому он пытается создать представление о происхождении этого основного для белковой молекулы радикала. В соответствии с этим, исследователь считает, что цианистые соединения возникли еще в то время, когда Земля представляла собой расплавленную или раскаленную массу. Именно при этих температурах в лаборатории удается получить указанные соединения искусственным путем. Впоследствии, при охлаждении земной поверхности, соединения циана с водой и с другими химическими веществами привели к образованию белковых веществ, наделенных «жизненными» свойствами.
В теории Пфлюгера, в настоящее время устаревшей, ценным является материалистический подход к проблеме происхождения жизни и выделение белка как важнейшей составной части протоплазмы. Происхождение белковых веществ можно представить себе и иначе. И действительно, вскоре после Пфлюгера появились другие попытки подойти к разрешению этого вопроса с биохимической стороны. Одной из таких попыток является теория английского ученого Дж. Эллена(1899).
Первое появление азотистых соединений на Земле, в противоположность Пфлюгеру, Эллен приурочивает к тому периоду, когда пары воды вследствие охлаждения сгустились в воду и покрыли поверхность Земли. В воде были растворены соли металлов, имеющие первостепенное значение для образования и деятельности белка. В ней же содержалось известное количество углекислоты, которая вступала в соединение с оксидами азота и с аммиаком. Последние могли образоваться при электрических разрядах, имевших место в атмосфере, содержащей азот.
Уже эти теории, относящиеся к концу прошлого столетия, ясно намечают основное направление, по которому и в настоящее время идет развитие проблемы возникновения живого.
Опорные точки
1. Представления древних людей о возникновении жизни носили вначале стихийно-материалистический характер.
2. В процессе развития цивилизации сменяли друг друга материалистические и идеалистические воззрения.
3. Первые попытки объяснить возникновение жизни на Земле с научной точки зрения известны из глубокой древности.
Вопросы для повторения и задания
1. Каковы основы и сущность жизни по мнению древнегреческих философов?
2. В чем заключается смысл опытов Ф. Реди?
3. Опишите опыты Л. Пастера, доказывающие невозможность самозарождения жизни в современных условиях.
4. Что собой представляют теории вечности жизни?
5. Какие материалистические теории возникновения жизни вам известны?
Используя словарный запас рубрик «Терминология» и «Summary», переведите на английский язык пункты «Опорных точек».
2.2. Современные представления о возникновении жизни
Вопрос о происхождении живого, естественно, не может быть разрешен, если неизвестны основные признаки или свойства жизни. Только имея в распоряжении известные представления о составе, строении и процессах, протекающих в организме, можно попытаться создать представление о тех условиях, при которых могла бы возникнуть жизнь, и тех путях, которые могли привести к ее появлению. Это, бесспорно, самый сложный вопрос современной биологии, особенно если учесть, что возникновение жизни восходит к отдаленным периодам истории Земли, мало доступным изучению.
Попробуем представить себе место биологической эволюции в общем процессе развития материального мира. Для этого необходимо проследить пути преобразования вещества с самого начала – с образования неорганических веществ в космическом пространстве и формирования планетных систем.
2.2.1. Эволюция химических элементов в космическом пространстве
Что собой представляет межзвездное пространство? Какие процессы протекают в нем? Ответ на эти и многие другие вопросы лежит на стыке двух наук – химии и астрономии.
Спектроскопия – важнейшая точка соприкосновения астрономии и химии. Анализ света, излучаемого звездами, дает богатые сведения об их химическом составе. Исследование спектров позволяет не только идентифицировать химические элементы, но дает также и другую информацию. Например, сравнивая интенсивность линий одного и того же элемента, можно измерить температуру источника, а содержание каждого элемента можно найти, измеряя относительную интенсивность его главных спектральных линий.