Читать интересную книгу Беспроводная сеть своими руками - Александр Ватаманюк

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 2 3 4 5 6 7 8

Технология CCK-OFDM

Технология гибридного кодирования CCK-OFDM используется при работе оборудования как с обязательными, так и с возможными скоростями передачи данных.

Как ранее упоминалось, при передаче информации применяются пакеты данных, имеющих специальную структуру. Эта структура содержит, как минимум, служебный заголовок. При использовании гибридного кодирования CCK-OFDM служебный заголовок пакета строится с помощью CCK-кодирования, а сами данные – с помощью OFDM-кодирования.

Технология QAM

Технология квадратурной амплитудной модуляции (QAM) используется при высоких скоростях передачи данных (начиная со скорости 24 Мбит/с). Ее суть заключается в том, что скорость передачи данных повышается за счет изменения фазы сигнала и изменения его амплитуды. При этом используются модуляции 16-QAM и 64-QAM, которые позволяют кодировать 4 бита в одном символе при 16 разных состояниях сигнала (в первом случае) и 6 битов в одном символе при 64 разных состояниях сигнала (во втором).

Обычно 16-QAM используется при скорости передачи данных 24 и 36 Мбит/с, а модуляция 64-QAM – при скорости передачи данных 48 и 54 Мбит/с.

2.3. Стандарты Radio Ethernet

Рассмотрим все существующие стандарты IEEE 802.11, которые предписывают использование определенных методов и скоростей передачи данных, методов модуляции, мощности передатчиков, полос частот, на которых они работают, методов аутентификации, шифрования и многое другое.

C самого начала сложилось так, что некоторые стандарты работают на физическом уровне, некоторые – на уровне среды передачи данных, а остальные – на более высоких уровнях модели взаимодействия открытых систем ISO/OSI.

Существуют следующее группы стандартов:

• IEEE 802.11a, IEEE 802.11b и IEEE 802.11g описывают работу сетевого оборудования (физический уровень);

• IEEE 802.11d, IEEE 802.11e, IEEE 802.11i, IEEE 802.11j, IEEE 802.11h и IEEE 802.11r – параметры среды, частоты радиоканала, средства безопасности, способы передачи мультимедийных данных и т. д.;

• IEEE 802.11f и IEEE 802.11c – принцип взаимодействия точек доступа между собой, работу радиомостов и т. п.

IEEE 802.11

Стандарт IEEE 802.11 был «первенцем» среди стандартов беспроводной сети. Работу над ним начали еще в 1990 году. Как и полагается, этим занималась рабочая группа из IEEE, целью которой было создание единого стандарта для радиооборудования, которое работало на частоте 2,4 ГГц. При этом ставилась задача достичь скорости 1 и 2 Мбит/с при использовании методов DSSS и FHSS соответственно.

Работа над созданием стандарта закончилась через 7 лет. Цель была достигнута, но скорость, которую обеспечивал новый стандарт, оказалась слишком малой для современных потребностей. Поэтому рабочая группа из IEEE начала разработку новых, более скоростных, стандартов.

Разработчики стандарта 802.11 учитывали особенности сотовой архитектуры системы. Почему сотовой? Очень просто: достаточно вспомнить, что волны распространяются в разные стороны на определенный радиус. Получается, что внешне зона напоминает соту. Каждая такая сота работает под управлением базовой станции, в качестве которой выступает точка доступа. Часто соту называют базовой зоной обслуживания.

Чтобы базовые зоны обслуживания могли общаться между собой, существует специальная распределительная система (Distribution System, DS). Недостатком распределительной системы стандарта 802.11 является невозможность роуминга.

Стандарт IEEE 802.11 предусматривает работу компьютеров без точки доступа, в составе одной соты. В этом случае функции точки доступа выполняют сами рабочие станции.

Этот стандарт разработан и ориентирован на оборудование, функционирующее в полосе частот 2400–2483,5 МГц. При этом радиус соты достигает 300 м, не ограничивая топологию сети.

IEEE 802.11a

IEEE 802.11a – наиболее перспективный стандарт беспроводной сети, который рассчитан на работу в двух радиодиапазонах – 2,4 и 5 ГГц. Используемый метод OFDM позволяет достичь максимальной скорости передачи данных 54 Мбит/с. Кроме этой, спецификациями предусмотрены и другие скорости:

• обязательные – 6, 12 и 24 Мбит/с;

• необязательные – 9, 18, 36, 48 и 54 Mбит/с.

Этот стандарт также имеет свои преимущества и недостатки. Из преимуществ можно отметить следующие:

• использование параллельной передачи данных;

• высокая скорость передачи;

• возможность подключения большого количества компьютеров.

Недостатки стандарта IEEE 802.11a такие:

• меньший радиус сети при использовании диапазона 5 ГГц (примерно 100 м);

• большая потребляемая мощность радиопередатчиков;

• более высокая стоимость оборудования по сравнению с оборудованием других стандартов;

• для использования диапазона 5 ГГц требуется наличие специального разрешения.

Для достижения высоких скоростей передачи данных стандарт IEEE 802.11a использует в своей работе технологию квадратурной амплитудной модуляции QAM.

IEEE 802.11b

Работа над стандартом IEEE 802.11b (другое название – IEEE 802.11 High rate, высокая пропускная способность) была закончена в 1999 году, и именно с ним связано название Wi-Fi (Wireless Fidelity, беспроводная точность).

Работа данного стандарта основана на методе прямого расширения спектра (DSSS) с использованием восьмиразрядных последовательностей Уолша. При этом каждый бит данных кодируется с помощью последовательности дополнительных кодов (CCK). Это позволяет достичь скорости передачи данных 11 Мбит/с.

Как и базовый стандарт, IEEE 802.11b работает с частотой 2,4 ГГц, используя не более трех неперекрывающихся каналов. Радиус действия сети при этом составляет около 300 м.

Отличительной особенностью этого стандарта является то, что при необходимости (например, при ухудшении качества сигнала, большой удаленности от точки доступа, различных помехах) скорость передачи данных может уменьшаться вплоть до 1 Мбит/с.[5] Напротив, обнаружив, что качество сигнала улучшилось, сетевое оборудование автоматически повышает скорость передачи до максимальной. Этот механизм называется динамическим сдвигом скорости.

Примечание.

Кроме оборудования стандарта IEEE 802.11b, часто встречается оборудование IEEE 802.11b+. Отличие между этими стандартами заключается лишь в скорости передачи данных. В последнем случае она составляет 22 Мбит/с благодаря использованию метода двоичного пакетного свёрточного кодирования (PBCC).

IEEE 802.11d

Стандарт IEEE 802.11d определяет параметры физических каналов и сетевого оборудования. Он описывает правила, касающиеся разрешенной мощности излучения передатчиков в диапазонах частот, допустимых законами.

Этот стандарт очень важен, поскольку для работы сетевого оборудования используются радиоволны. Если они не будут соответствовать указанным параметрам, то могут помешать другим устройствам, работающим в этом или близлежащем диапазоне частот.

IEEE 802.11е

Поскольку по сети могут передаваться данные разных форматов и важности, существует потребность в механизме, который бы определял их важность и присваивал необходимый приоритет. За это отвечает стандарт IEEE 802.11e, специально разработанный с целью передачи потоковых видео– или аудиоданных с гарантированными качеством и доставкой.

IEEE 802.11f

Стандарт IEEE 802.11f разработан с целью обеспечения аутентификации сетевого оборудования (рабочей станции) при перемещении компьютера пользователя от одной точки доступа к другой, то есть между сегментами сети. При этом вступает в действие протокол обмена служебной информацией IAPP (Inter-Access Point Protocol), который необходим для передачи данных между точками доступа. При этом достигается эффективная организация работы распределенных беспроводных сетей.

IEEE 802.11g

Наиболее «продвинутым» на сегодняшний день стандартом можно считать стандарт IEEE 802.11g, который унаследовал самые лучшие свойства стандартов IEEE 802.11b и IEEE 802.11b и, кроме того, обладает многими собственными полезными качествами. Целью создания данного стандарта было достижение скорости передачи данных 54 Мбит/с.

Как и IEEE 802.11b, стандарт IEEE 802.11g разработан для работы в частотном диапазоне 2,4 ГГц. IEEE 802.11g предписывает обязательные и возможные скорости передачи данных:

• обязательные – 1; 2; 5,5; 6; 11; 12 и 24 Мбит/с;

• возможные – 33, 36, 48 и 54 Мбит/с.

Для достижения таких показателей используется кодирование с помощью последовательности дополнительных кодов (CCK), метод ортогонального частотного мультиплексирования (OFDM), метод гибридного кодирования (CCK-OFDM) и метод двоичного пакетного свёрточного кодирования (PBCC).

Стоит отметить, что одной и той же скорости можно достичь разными методами, однако обязательные скорости передачи данных достигаются только с помощью методов CCK и OFDM, а возможные скорости – с помощью методов CCK-OFDM и PBCC.

Преимуществом оборудования стандарта IEEE 802.11g является совместимость с оборудованием IEEE 802.11b. Вы сможете легко использовать свой компьютер с сетевой картой стандарта IEEE 802.11 для работы с точкой доступа стандарта IEEE 802.11g, и наоборот. Кроме того, потребляемая мощность оборудования этого стандарта намного ниже, чем аналогичного оборудования стандарта IEEE 802.11а.

1 2 3 4 5 6 7 8
На этом сайте Вы можете читать книги онлайн бесплатно русская версия Беспроводная сеть своими руками - Александр Ватаманюк.
Книги, аналогичгные Беспроводная сеть своими руками - Александр Ватаманюк

Оставить комментарий