Шрифт:
Интервал:
Закладка:
Время существования пассивных космических аппаратов на самых низких орбитах — несколько десятков лет. Под действием сопротивления воздуха и земного притяжения все спутники на низких орбитах в своё время входят в плотные слои воздуха и ярко вспыхивают подобно болидам. Наиболее массивные из них падают на поверхность Земли. Куски космического мусора размером более метра в среднем падают на её поверхность не реже одного раза в неделю, фрагменты меньшего размера — ежедневно. К сожалению, точно предупредить о времени и месте их падения специалисты пока не могут.
Из-за того, что густонаселённые районы на нашей планете составляют лишь малую долю её поверхности, землянам пока везёт. Например, в 1978 г. «Космос-594» рухнул в тайге на севере Канады, а через год обломки американской космической станции «Скайлэб» выпали в пустынях Австралии. Однако большую опасность представляют аппараты с радиоизотопными источниками электрической энергии.
В 1964 г. в ходе неудачного запуска навигационного спутника США с ядерными источниками энергии радиоактивные материалы рассеялись над Индийским океаном. Обычно же такие спутники к концу периода активного использования в целях безопасности переводят на орбиты высотой около 1000 км, где атмосфера практически отсутствует, и потому аппараты могут оставаться там многие сотни лет — до тех пор, пока ядерные энергетические устройства перестанут представлять радиационную опасность.
Проблема загрязнения космоса признана многими международными организациями, например Международным астрономическим союзом. Помимо всего прочего, космический мусор становится все более существенной помехой для астрономических наблюдений. Например, на каждом четвёртом снимке, полученном космическим телескопом «Хаббл», регистрируются техногенные обломки. Проблема загрязнения ежегодно обсуждается на сессиях Комитета ООН по мирному использованию космического пространства и его подкомитетов. Специалисты пришли к выводу, что прежде всего необходимо сделать более экологичной космическую деятельность, свести к минимуму рост засоренности околоземного пространства. Придётся более тщательно определять требуемое количество ракетного топлива, чтобы после выполнения разгонных и коррекционных операций баки становились почти сухими. В противном случае, как мы уже говорили, перегрев остатков топлива или срабатывание пироболтов могут стать причиной взрыва. На спутнике должен быть запас рабочего тела (например, сжатого газа) для изменения орбиты спутника после исчерпания его ресурса. Возможны два варианта заключительного маневра. Первый — перевод спутника на такую орбиту, чтобы не позже чем через 25 лет он затормозился в атмосфере. Второй вариант — перевод спутника на высокую орбиту космической «свалки». В последние годы крупные аппараты по завершении их миссии сразу сводят с орбиты и затопляют в южной части Тихого океана, уже прозванной «кладбищем космических кораблей».
Существуют проекты эффективного воздействия на опасные кометы или астероиды эшелонами масс крупного космического мусора, скопившегося на околоземных орбитах. Если суммарная масса собранного техногенного мусора составит около 1000 т, то энергия его удара о поверхность опасного объекта может быть сопоставима с энергией ядерного взрыва мощностью от 1 до 10 Мт.
Космический телескоп «Хаббл» — автоматическая обсерватория, выведенная на орбиту Земли в 1990 г.ГЛАВА VI.
ВСЕМИРНАЯ СЛУЖБА КОСМИЧЕСКОЙ БЕЗОПАСНОСТИ
Человечество располагает научными, техническими и технологическими возможностями для создания эффективных средств защиты от космической угрозы. На рубеже восьмидесятых — девяностых годов учёные предложили политикам и общественности использовать потенциал военно-промышленного и космического комплексов для создания щита, способного укрыть земную цивилизацию от факторов космической опасности. Первые шаги в этом направлении были сделаны в последнее десятилетие XX в.
Защита земной цивилизации и самой жизни на нашей планете от космических угроз — задача сложная, многоплановая, долговременная и чрезвычайно дорогая. Последствия космического удара могут породить катастрофу регионального и даже глобального масштаба.
Активная защита.
Варианты базирования средств системы перехвата опасных космических объектов
Специалисты рассматривают различные возможности размещения средств космической защиты. В целях большей безопасности система должна иметь несколько эшелонов.
Первый, самый удалённый эшелон предлагается разместить в окрестностях точек либрации системы Солнце — Земля. Точками либрации называют точки, в которых тело малой массы может находиться в состоянии относительного равновесия по отношению к двум другим небесным телам. Второй эшелон специалисты предлагают развернуть вблизи точек либрации системы Земля — Луна, а также на самой Луне.
Третий — также космический эшелон — могут составить специально оснащённые искусственные спутники Земли, находящиеся как на низких, так и на высоких орбитах, вплоть до геостационарных (на высоте около 36 000 км). Четвёртый — последний — эшелон развёртывается на поверхности Земли.
Каждый из эшелонов должен иметь в своем составе комплекс для дальнего обнаружения и определения орбит ОКО, средства воздействия на опасные объекты, а также системы обеспечения работоспособности элементов космической защиты и управления ими.
В чем преимущество размещения средств космической защиты в области точек либрации систем Солнце — Земля и Земля — Луна?
В системе Земля — Луна они расположены в плоскости обращения Луны вокруг Земли и занимают относительно неё неизменное положение. Таких точек существует 5. Из них три (LI, L2, L3) лежат на прямой, соединяющей Землю и Луну, а две другие — L4, L5 — на лунной орбите. Расстояние от Земли до точек либрации LA и L5, как и до Луны, равно 384 000 км. Эти точки — частные решения задачи движения космического объекта под действием притяжения Земли и Луны.
Точки L4 и L5 образуют с Луной и Землёй два равносторонних треугольника. Их называют треугольными точками либрации. Французский математик и астроном Лагранж в конце XIX в. показал, что положение малого тела, помещённого в треугольные точки, будет устойчивым. Более того, тело, выведенное из этих точек, обязательно вернётся назад.
Вот почему вблизи треугольных точек космический объект может находиться без коррекции очень долгое время (до 15 месяцев). Кроме того, благодаря особой структуре силового поля в районе точек либрации затраты на проведение каждой коррекции весьма незначительны по сравнению с коррекциями в любой другой области космического пространства. В этом и заключается основное преимущество базирования здесь космических перехватчиков.
Положение точек либрации в системе Земля — Луна * * *Цели и задачи Всемирной службы защиты Земли
Основная цель Всемирной службы защиты Земли очевидна — предотвратить возможность или уменьшить отрицательные последствия космических катастроф. Меры защиты могут быть активные и пассивные. Пассивные меры предполагают обнаружение опасных объектов, слежение за ними, оценку возможных последствий столкновения, эвакуацию населения и ценностей, защиту наиболее важных объектов.
Активные способы защиты сводятся к уничтожению потенциально опасных космических объектов (ОКО) или к изменению их орбит.
В том и другом случае первый этап — открытие ОКО, возможно более полное изучение их размеров, природы и уточнение траектории. Выбор способов защиты и мер воздействия зависит от свойств открытого опасного объекта и времени до возможного столкновения. Воздействие на объект до выяснения его свойств в некоторых случаях может не только не уменьшить опасность, но увеличить масштаб катастрофы. В зависимости от имеющегося запаса времени до столкновения будут планироваться меры защиты.
Необходимые системы защиты Земли:
— обнаружение, слежение, распознание, каталогизация опасных космических объектов;
— определение степени угрозы и возможных последствий столкновения;
— организация специальных мер для предотвращения катастрофы или снижения ее уровня.
В обобщенном виде система должна включать в себя три части: службу наблюдений, службу управления и службу противодействия.
А вот более полный состав системы космической защиты:
— сеть центров теоретических исследований и разработок проблем космической защиты;
— система мониторинга за опасными космическими объектами;
— средства доставки (ракеты-носители, разгонные блоки, перехватчики и др.);
— средства воздействия (ядерные и неядерные);
— средства регистрации и контроля результатов воздействий на опасные космические объекты;
— глобальный командно-измерительный комплекс;
— центральная система управления средствами защиты Земли.
Основные требования к средствам защиты Земли: высокая (оптимальная) экономичность; высокая вероятность перехвата; минимальное влияние мер защиты от опасных космических объектов на околоземное пространство и экологию Земли.
Наиболее реально и необходимо начинать с создания службы оперативного перехвата. Ведь, как мы уже знаем, в ближайшем будущем наиболее вероятно столкновение с небольшим небесным телом, которое может быть обнаружено вблизи Земли за сравнительно короткое время до встречи с ним.
Параллельно необходимо и важно постоянно вести астрономические наблюдения малых тел Солнечной системы, проводить теоретические и экспериментальные исследования по проблемам космической безопасности. Важными направлениями этой работы являются разработка моделей типов опасных космических объектов и моделей воздействия на них.
- Сто пятьдесят три - Игорь Юсупов - Прочая научная литература / Прочая религиозная литература / Справочники
- 100 великих рекордов стихий - Николай Непомнящий - Прочая научная литература
- Ландшафты мозга. Об удивительных искаженных картах нашего мозга и о том, как они ведут нас по жизни - Ребекка Шварцлоуз - Биология / Зарубежная образовательная литература / Прочая научная литература
- Как микробы управляют нами. Тайные властители жизни на Земле - Эд Йонг - Прочая научная литература
- Полвека под землей - Норбер Кастере - Прочая научная литература