Шрифт:
Интервал:
Закладка:
«The Electrical Engineer», Нью-Йорк, 2 сентября 1891 г.
14
О рентгеновских лучах (1)
Человек не может смотреть на небольшую лампу Крукса без чувства, близкого к благоговению, когда он размышляет о том, сколь много было совершено в науке с ее помощью. Это, во-первых, великолепные результаты, полученные ее создателем; затем выдающаяся работа Ленарда и, наконец, удивительные достижения Рентгена. Кроме того, она, вероятно, несет в себе демоническую благодарность Асмодея, который будет выпущен из своей тесной темницы удачливым ученым. Временами мне и самому слышался шепот, и я начинал усердно рыться в своих пыльных колбах и бутылках. Боюсь, мое воображение вводило меня в заблуждение, но они всё еще здесь, мои пыльные колбы, и я всё еще прислушиваюсь, полный надежд.
Повторив превосходные эксперименты профессора Рентгена, я направил все свои силы на исследование природы излучений и совершенствование способов их получения. Нижеследующее является кратким и, надеюсь, полезным описанием применявшихся методов и наиболее выдающихся результатов, достигнутых в этих двух направлениях.
Чтобы получить наиболее интенсивные излучения, мы должны сначала принять во внимание, что, какова бы ни была их природа, они неизбежно зависят от интенсивности катодных потоков. Последние, в свою очередь, зависят от величины потенциала; отсюда следует: желательно применять максимально достижимое электрическое напряжение.
Чтобы получить высокое напряжение, мы можем воспользоваться простой индукционной катушкой, электростатической машиной или катушкой с разрядником. У меня создалось впечатление, что в Европе большинство результатов было достигнуто благодаря применению электростатической машины или катушки Румкорфа.
Но поскольку эти электрические устройства могут вырабатывать лишь сравнительно небольшой потенциал, мы, естественно, вынуждены применять катушку с разрядником в качестве наиболее эффективного преобразователя. Ее применение практически не ограничивает длину искрового разряда, и единственным условием является обязательное владение экспериментатором определенными знаниями и навыками в настройке контуров, в частности, в том, что касается резонанса, на это я указывал в своих предыдущих работах по данному вопросу.
После создания катушки с разрядником, пригодной для подключения к любому типу тока, постоянному или переменному, экспериментатор приходит к размышлениям относительно того, какого типа колбу использовать. Понятно, если мы помещаем в колбу два электрода или применяем один внутренний и один наружный электроды, мы ограничиваем потенциал, поскольку наличие не только анода, но любого проводящего объекта действует понижающе на реально достижимый потенциал катода. Таким образом, чтобы добиться намеченной цели, экспериментатор неизбежно приходит к идее применения колбы с одним электродом, при этом второй электрод должен находиться на возможно большем удалении.
Очевидно, что действие внутреннего электрода должно обеспечивать максимальную скорость катодных потоков, так как лампы без внутренних электродов для этих целей гораздо менее продуктивны вследствие потерь энергии в стекле. Существует, по-видимому, распространенная ошибка относительно концентрации лучей с помощью вогнутых электродов. Во всяком случае, это невыгодно. Для такой лампы имеются определенные специальные схемы из катушек с разрядником и контуров, конденсаторов и статических экранов, о чем я подробно рассказал в предыдущих статьях.
После того как сделан выбор индукционного устройства и типа лампы, следующим важным объектом размышлений является вакуум. Относительно этого предмета могу довести до всеобщего сведения явление, известное мне уже давно и возможности которого я использовал для производства вакуумных рубашек и всевозможных ламп накаливания, а само его впоследствии счел крайне важным, если не сказать существенным, для получения отчетливых рентгеновских отпечатков. Я имею в виду метод разрежения с помощью электрических средств до любой желаемой степени, намного превышающей достигаемую с помощью механических устройств.
Хотя к этому результату можно прийти, применяя статическую машину, а также обычную индукционную катушку, дающую достаточно высокое напряжение, я обнаружил, что в значительно большей степени подходящим аппаратом, обеспечивающим к тому же максимальную быстроту в работе, является катушка с разрядником. Лучше всего соблюдать следующий порядок действий: сначала из лампы откачивается воздух с помощью обычного вакуумного насоса до достаточно высокой степени разрежения, хотя мои опыты доказали, что это совсем не обязательно, так как я посчитал возможным создавать вакуум, начиная с низкого давления. После создания вакуума в колбе лампа присоединяется к клемме катушки с разрядником предпочтительно с высокой частотой колебаний, и обычно отмечается следующее явление: сначала по лампе растекается молочно-белый свет, при высокой степени разрежения в колбе стекло может фосфоресцировать в течение короткого времени. Во всяком случае, свечение, как правило, быстро исчезает, а белый свет концентрируется вокруг электрода, после чего на некотором расстоянии от последнего формируется темное пространство. Вскоре после этого свет приобретает красноватый цвет, а клемма очень сильно нагревается. Этот нагрев, однако, наблюдается только на мощных аппаратах. На этой стадии целесообразно внимательно следить за лампой и контролировать напряжение, так как электрод может быстро сгореть.
Спустя некоторое время красноватый свет исчезает, потоки опять становятся белыми, после чего они, ослабевая, пульсируют вокруг электрода, пока окончательно не исчезнут. Между тем свечение стекла становится всё более и более интенсивным, а то место в колбе, куда поток бьет, становится очень горячим, в то же время свечение вокруг электрода исчезает, и он до такой степени охлаждается, что стекло вокруг него может быть, как ни удивительно, холодным, как лед. Газ в колбе к этому времени достигает необходимой степени разрежения. Процесс можно ускорить, если попеременно осуществлять нагревание и охлаждение и использовать небольшой электрод. Следует добавить, что точно так же можно использовать лампы с наружными электродами. Пожалуй, будет представлять интерес примечание, что при определенных условиях, более глубоким исследованием которых я занимаюсь, давление газа в сосуде можно увеличивать с помощью электричества.
Полагаю, что разрушение электрода, которое неизменно происходит, связано с резким снижением температуры. В момент, когда электрод становится холодным, лампа готова для производства рентгеновских отпечатков. Как только электрод становится таким же горячим, как стекло, — это верный знак, что вакуум недостаточно высок или что электрод слишком мал. Для высокоэффективной работы внутренняя поверхность колбы, на которую наталкивается катодный поток, должна производить впечатление, будто стекло находится в жидком состоянии.
Я обнаружил, что в качестве охлаждающей среды лучше всего применять потоки холодного воздуха. Применяя этот способ, можно успешно работать с лампой, имеющей очень тонкие стенки, при этом прохождение лучей не встречает значительных препятствий.
Хочу призвать не удерживать экспериментаторов от использования стеклянной колбы, поскольку убедился, что непрозрачность стекла, так же как прозрачность алюминия, до некоторой степени преувеличена, поскольку очень тонкий алюминиевый лист отбрасывает ясно различимую тень, в то же время удалось получить отпечатки через толстую стеклянную пластину.
Описанный выше метод ценен не только как способ получения сколь угодно высоких вакуумов, но он еще более важен тем, что наблюдаемое явление проливает свет на результаты, полученные Ленардом и Рентгеном.
Хотя феномен разрежения при описанных выше условиях допускает различные интерпретации, основной интерес вызывает одна из них, которой я придерживаюсь, то есть фактически происходит выброс частиц сквозь стенки колбы. В последнее время я замечал, что колба начинает действовать должным образом на чувствительную пластину только с момента, когда разрежение становится заметным, а производимый эффект наиболее ярок, когда процесс разрежения наступает быстро, даже несмотря на то, что фосфоресценция может и не проявиться особенно ярко. В таком случае очевидно, что два явления тесно связаны и всё более убеждают, что нам приходится иметь дело с потоком материальных частиц, которые с большими скоростями падают на чувствительную пластину. Основываясь на мнении лорда Кельвина о скорости выбрасываемых частиц в лампе Крукса, мы при очень высоких потенциалах без труда добьемся скоростей в целую сотню километров в секунду. Теперь, с другой стороны, встает известный вопрос: выбрасываются частицы из электрода или из заряженной поверхности вообще, включая вариант с наружным электродом, сквозь стеклянные или алюминиевые стенки или они просто ударяются о внутреннюю поверхность и вырывают частицы из внешней стороны колбы, действуя исключительно механически, подобно тому, как разбивается шеренга бильярдных шаров? До сих пор большая часть явлений указывает на то, что они выбрасываются через стенку колбы, из какого бы материала она ни была сделана, и я нахожусь в поиске дополнительных решающих свидетельств в этом направлении.
- Кризи$: Как это делается - Николай Стариков - Публицистика
- Толкиен. Мир чудотворца - Никола Бональ - Публицистика
- Сражение года: оборона Саур-Могилы - Евгений Норин - Публицистика
- Коммандос Штази. Подготовка оперативных групп Министерства государственной безопасности ГДР к террору и саботажу против Западной Германии - Томас Ауэрбах - Публицистика
- Опрокинутый мир. Тайны прошлого – загадки грядущего. Что скрывают архивы Спецотдела НКВД, Аненербе и Верховного командования Вермахта - Леонид Ивашов - Публицистика