Со сдвигом по фазе и периодичностью явлений тесно связан характер изменения переменных системы. Реальные промышленные системы существенно отличаются одна от другой характером изменения цен, темпов производства, потоков заказов и других переменных. Модель системы должна давать такие же динамические характеристики, какие существуют в действительности, в реальной системе.
Многие характеристики системы, которые трудно установить в реальных условиях, могут быть выявлены и проанализированы на модели. Очевидно, что эти обнаруженные с помощью модели характеристики не должны противоречить тому, что нам известно о реальной системе. Системы различаются между собой тенденциями усиливать или подавлять внешние возмущения. Это легко можно наблюдать на модели[57] но в реальных условиях об этом можно судить лишь на основании выводов, полученных в результате рассмотрения влияния изолированных возмущений. Подобным образом могут быть проанализированы реакции модели на нелинейные условия[58], и некоторые из них могут служить доказательством пригодности модели, если они согласуются с реакциями реальной системы.
Многие характеристики поведения системы в прошлом могут быть измерены количественно. На этом основании можно сформулировать ряд количественных критериев как основы сравнения результатов работы моделей с данными, полученными в реальных системах. Однако, прежде чем приступать к этому, необходимо решить, по каким показателям следует производить сравнение и различие в значениях каких параметров следует признать существенным. В ряде случаев общая качественная картина развития явления на модели близка действительному протеканию этого явления (часто в пределах, не превышающих двухкратных отклонений). Тогда соответствующей корректировкой параметров отображаемой системы (не выходя за пределы их возможных величин, в соответствии с нашими знаниями о реальной системе) возможно изменить полученные на модели решения до любых желаемых значений. Кроме того, обычно имеется несколько параметров, каждый из которых может привести к ложным результатам. Попытка достичь наибольшего соответствия модели реальной системе не тождественна изысканию рекомендаций с целью создания наилучшей системы. Предполагаемые изменения не зависят от точности наших знаний о системе; в основном они определяются взаимосвязями в модели, которые могут дать хорошее приближение к интересующим нас характеристикам системы.
В тех случаях, когда корректировка параметров модели с целью достижения более точного соответствия с системой не приводит к заметному повышению эффективности модели и когда мы не в состоянии отдать предпочтение какой-либо одной из двух различных по структуре моделей вследствие небольшого различия в получаемых на этих моделях решениях, то нет особой необходимости уточнять формулировки определений и измерения. Таким нам представляется существующее сегодня положение вещей. Нет никаких сомнений в том, что в будущем эта точка зрения изменится. Существенные преимущества создания систем с помощью моделей сейчас настолько велики, что пока еще не возникает потребности в более точных инструментах. По мере того как системы управления будут улучшаться и станут нам более понятными, будет появляться потребность в более точных средствах и усовершенствованных инструментах.
Итак, крупные ошибки при создании модели обычно легко выявляются при сопоставлении явно ошибочного поведения модели с тем, что следует ожидать в реальной системе. Если поведение модели недостаточно близко ожидаемому в реальной системе (определение «достаточно близко» зависит от целей модели и существа наблюдаемых различий), то мы должны вновь начать с рассмотрения элементарной структуры системы, ее границ и элементов. Необходимо найти объяснение причин несходства, что позволит исправить поведение модели. Чтобы изменить конкретные характеристики любой модели, необходимо выполнить значительный объем работ; для этого требуется глубокое знание рабочих деталей действительной системы.
12. 6. Модель проектируемой системы
Главной задачей сравнения модели и реальной системы является выявление возможностей отображения поведения существующей системы, подтверждение адекватности основных элементов структуры модели. Уверенность в справедливости основных структурных компонентов системы далее распространяется на остальные компоненты изменяемой системы и затем, в заключение, формулируется основное положение о том, что общие характеристики, полученные на новой модели, являются достоверными и полностью соответствуют характеристикам работы измененной реальной системы.
В большинстве случаев проверка соответствия поведения модели в настоящее время тому ее поведению, которое было предварительно намечено, не является необходимой. Многие параметры и правила системы, которые точно не определены и нет возможности даже ориентировочно их оценить, оказываются очень легко управляемыми[59]. Далее мы, естественно, должны в большей мере проявлять интерес к вопросу о возможности создания новой системы, соответствующей модели, нежели тому, соответствует ли модель прежней системе. В этом случае проверка пригодности модели заключается в установлении возможности управлять реальной системой таким образом, чтобы добиться ее соответствия модели.
Существуют и другие модели, которые в еще большей степени удалены от реальных систем. Подобные модели целесообразно применять при исследовании вопроса о том, что произошло бы, если бы реальная система имела такие же характеристики, как и модель. Многое можно понять, изучая системы, которые могли бы существовать. Действительно, ведь это блестящее начало экспериментирования на моделях, когда одним из первых шагов является создание такой модели, которая в наибольшей степени соответствует лучшим возможностям и знаниям исследователя. Основное внимание в этом случае уделяется вопросам правдоподобия, но не точности. Обоснование точности выдвинутых предположений является второстепенным и служит цели подчеркнуть, что модель может учить, поскольку она отображает такого рода события, которые могли бы существовать в действительности. Если модель является достоверной на уровне элементарных действий, осуществляемых в системе, то эта модель будет содействовать более глубокому пониманию динамики больших систем[60]. В этом случае исследования на модели существенно расширят нашу осведомленность о такого рода факторах, которые в наибольшей степени определяют динамическое поведение системы.