Шрифт:
Интервал:
Закладка:
Это означает, что схема наша автоматически синхронизируется с частотой сети, и промежуток времени от начала очередного полупериода до возникновения запускающего тиристор импульса (фаза управляющего импульса) будет достаточно стабилен, независимо от внешних условий. Если вдруг вы захотите использовать в этой схеме вместо аналогового генератора микроконтроллер или просто логическую схему, то вам придется тоже обязательно синхронизировать его выходные импульсы с сетевым напряжением. В нашей схеме можно, как это часто делают, ограничить напряжение на элементах схемы управления с помощью стабилитрона (его следует включать параллельно делителю R3-R4), но ни в коем случае не следует дополнительно еще и включать сглаживающий конденсатор.
* * *
Заметки на полях
Подобрав управляющий резистор, у которого корпус и ручка надежно изолированы от контактов, можно упростить конструкцию, если питать управляющую цепочку все же от сети. Для этого следует последовательно с резистором R7 поставить любой маломощный диод (катодом к R7, как показано на рис. 10.6 далее), а последовательно с ним, параллельно всей управляющей цепочке, — стабилитрон на 10–15 В (например, Д814Г — учтите, что ток через него составит порядка 30 мА, так что стабилитроны в стеклянных корпусах не подойдут!), шунтированный электролитическим конденсатором емкостью 47-100 мкФ. Вообще-то можно обойтись и без стабилитрона (тогда конденсатор должен быть на напряжение не менее 35 В), но так схема станет работать надежнее. Однако будьте осторожны, особенно при отладке схемы! Корпус такого устройства обязательно должен быть из пластика, а не из металла.
* * *
Если вникнуть в описанный алгоритм работы поглубже, то станет понятно, что при малых углах регулирования (до половины полупериода) генератор может выдать (а в схемах, описанных далее — и выдаст) за полупериод несколько импульсов, но это не должно нас смущать — тиристор запустится с первым пришедшим, а остальные просто сработают вхолостую.
Вот сколько тонкостей скрыто в такой, казалось бы, простой схеме!
Оптрон АОД130Б можно заменить на любой другой диодный оптрон, однако учтите, что отечественные оптроны старых моделей имеют очень небольшое пробивное напряжение изоляции (100–200 В). Впрочем, это критично только в том случае, если регулирующая схема (переменный резистор) гальванически соединена с потенциалом, связанным с сетью, — например, закорочена на корпус, который связан с настоящей землей. Поскольку это маловероятно, то в крайнем случае можно не обращать внимания на этот параметр, но все же использовать «нормальные» оптопары как-то спокойнее. Транзисторы КТ815Г и КТ814Г, вообще говоря, можно заменить любыми соответствующими маломощными транзисторами, скажем, КТ315Г/КТ361Г или КТ3102/КТ3107, потому что мощность транзистора тут большой роли не играет. Но с более мощными схема может работать стабильнее из-за того, что у них в открытом состоянии внутренние сопротивления переходов существенно ниже. Конденсатор С1, естественно, неполярный, керамический или с органическим диэлектриком.
Для больших токов нагрузки (превосходящих 1–2 А) тиристор придется поставить на радиатор 15–30 см2. Крупным недостатком этой простой и надежной схемы является наличие моста, через который течет тот же ток, что и через нагрузку. При указанных на схеме диодах, рассчитанных каждый на ток до 3 А, и тиристоре с предельным током 10 А мощность в нагрузке может достигать 1,3 кВт (т. к. через каждый диод ток течет только в течение полупериода, то ток через него и выделяющаяся на нем мощность наполовину меньше, чем на тиристоре). Производители диодов из серии 1N54хх в описании их характеристик хвастаются, что даже при максимальном токе дополнительного теплоотвода для них не требуется. Однако если рассчитывать на максимальную мощность, и, тем более, если устройство предполагается установить в герметичном корпусе, где будет, несомненно, очень жарко, то их все же лучше поменять на такие, которые можно устанавливать на радиатор, например, из серии КД202 с буквами от К до Р (т. к. эти диоды рассчитаны на ток до 5 А, то можно выжать мощность уже 2 кВт). Естественно, можно использовать и готовый мост, скажем, импортный KBL04.
Отладку надо начинать со сборки всей схемы, исключая тиристор с мостом и резистор R7. Регулирующую цепочку R1-R2 на входе оптрона (вместо переменника R1 впаяйте пока постоянный резистор) следует подсоединить к тому источнику питания, который будет использоваться в реальном регуляторе (можно применить любой нестабилизированный источник со встроенной вилкой или только его внутренности, как указано в главе 9). Напряжение источника большого значения не имеет, оно может быть любым в диапазоне от 7 до 20 В. Питание остальной части схемы мы на период отладки обеспечиваем также от источника постоянного тока — можно от того же самого, что питает и регулирующую цепочку.
Затем постоянный резистор, заменяющий R1, перемыкаем накоротко с помощью проволочной перемычки, все включаем и смотрим осциллографом импульсы, которые должны появиться на резисторе R5. Если импульсов нет, это означает одно из двух: либо что-то неправильно собрано, либо вы их просто не видите, т. к. они достаточно короткие. Посмотрите тогда форму напряжения на конденсаторе С1 — там вы точно должны все поймать. Если конденсатор заряжается и разряжается как надо, попробуйте опять поймать импульсы, меняя длительность развертки и используя синхронизацию. После того как вы их поймаете, определите по сетке осциллографа и установкам времени развертки длительность промежутка между ними. Изменяя номинал резистора R2, это время нужно установить в пределах одной-полутора миллисекунд, меньше не надо — ранее мы уже узнали, что при малых фазовых сдвигах регулирования все равно никакого не будет (30° сдвига и соответствует примерно 1,5 мс для частоты 50 Гц). После этого снимаем перемычку с R1. При этом промежуток должен оставаться в пределах 10–11 мс. Если это не так, подберите величину резистора R1. Затем на его место следует впаять переменный резистор точно такого же номинала.
Наконец, отключаем осциллограф, подключаем резистор R6 и мост с тиристором, а в качестве нагрузки подсоединяем обычную бытовую лампочку накаливания. Насчет мер предосторожности при работе с сетевым напряжением вам уже все, надеюсь, известно (если нет — перечитайте соответствующий фрагмент из главы 2). Не забудьте убедиться, что на макете не валяются обрезки выводов компонентов, которые могут замкнуть сетевое питание и устроить тем самым маленький атомный взрыв. Сначала включаете питание регулирующей цепочки, потом — сеть. При вращении движка резистора R3 яркость лампы должна плавно меняться от максимума до полной темноты. В последнем случае волосок не должен светиться совсем, даже темно-красным свечением. Чтобы убедиться в том, что регулирование происходит именно до максимума, надо просто временно перемкнуть тиристор (Осторожно! Перемычку надо устанавливать только при выключенном сетевом питании) — это и будет номинальная яркость лампы. Если диапазон регулировки недостаточен или, наоборот, в начале или конце наблюдается значительный холостой ход — подберите резисторы R1-R2 поточнее.
На рис. 10.4 изображен улучшенный вариант только что рассмотренной схемы, который не требует мощного моста (управляющая оптроном цепочка не показана, она идентична предыдущему случаю) и обеспечивает через нагрузку не пульсирующее, а переменное напряжение (как на осциллограмме рис. 10.2 внизу).
Рис. 10.4. Вариант регулятора с двумя встречно-параллельными тиристорами
Для того чтобы получить напряжение в нагрузке в оба полупериода, используются два тиристора VD1 и VDT, включенные встречно-параллельно. Управление ими осуществляется через импульсный трансформатор Т1, который представляет собой ферритовое кольцо марки 1000НН-2000НН диаметром от 10 до 20 мм. Обмотки намотаны проводом МГТФ-0,35. Первичная обмотка (I) содержит 20–30 витков, вторичные (II и III) наматываются вместе и содержат от 30 до 50 витков каждая. Обратите внимание на противоположную полярность включения вторичных обмоток — если она иная, то включение нагрузки будет только в один из полупериодов. Через маломощный мост КЦ407 питается схема генератора, работа которой не отличается от описанной ранее. Резистор R7 можно поставить и до моста в цепь переменного напряжения, тогда требования к предельно допустимому напряжению диодов моста снижаются.
Еще один вариант схемы, который позволяет вместо двух тиристоров использовать симистор (триак), показан на рис. 10.5.
Рис. 10.5. Вариант регулятора с симистором вместо тиристора
- Твой друг электроника - Ю. Верхало - Радиотехника
- В помощь радиолюбителю. Выпуск 13 - Михаил Адаменко - Радиотехника
- В помощь радиолюбителю. Выпуск 7 - Вильямс Никитин - Радиотехника