Читать интересную книгу ВОЛШЕБНЫЙ ДВУРОГ - Сергей Бобров

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 47 48 49 50 51 52 53 54 55 ... 116

— В порядке! Ха-ха-ха! — раздалось откуда-то из-под облаков страшное громыхание плюшевого Мишки-великана.

— Хм!.. — грустно заметил Радикс. — Он, кажется, еще сомневается, все ли ты уразумел?

— Н-не знаю… — неуверенно признался Илюша.

— А не попробовать ли нам сначала? — крикнул Мишка.

— Давай попробуем! — робко сказал Илюша.

И снова вдруг сбежались знакомые человечки, составили формулу, опять Мишка стал маленьким и мирно сидел на тулье цилиндра, но справа появилось много человечков-малюток:

— 223 —

S = a1 (qn — 1) / (q — 1) — a1 / (q — 1) = a1 + a2 + a3 + … an

— Ну? — вопросительно заявил Мишка.

Мгновенно человечки справа исчезли все, кроме первого, у которого на груди появилась цифра «1». Немедленно в лапке Мишки тоже оказалась единица, а на груди у тощей Суммы появилась та же самая единица.

— Вперед, друзья! — энергично скомандовал Мишка.

Сейчас же вслед за первым человечком появился второй, у которого на груди было число «½», в лапке Мишки оказалась уже двойка, а на груди у Суммы появилось не «1», а «1½». Затем появился третий человечек, имя которого было «¼», и Мишка показал своей лапкой, что это номер третий, а Сумма сложила все три члена, и вышло 1¾. Появился еще новый член прогрессии, его звали «1/8». Мишка засвидетельствовал, что это был четвертый номер, а Сумма заявила, что теперь всего выходит 1 7/8. Все было правильно, как заметил Илюша. Затем человечки стали появляться все дальше и дальше, быстро и равномерно выпрыгивая на сцену и мелькая один за другим. Казалось, будто прямо перед тобой проходит лента кинокартины и все понемножку меняется, точно толчками. А вместе с тем все быстрее мелькали номера у Мишки в лапке и менялось число на груди у Суммы. Но самое интересное заключалось в том, что человечки, что ни дальше, стали появляться все скорей и скорей, и наконец глаз почти перестал замечать эти толчкообразные изменения картины, а просто казалось, что длинная-предлинная вереница членов прогрессии все удлиняется и удлиняется. А дальше уже стало казаться, что просто куда-то очень-очень далеко вправо растет длинненькая тоненькая ниточка, и уж нельзя было разобрать, что она состоит из человечков, которых делается все больше и больше… Наконец Мишка взмахнул лапкой и сказал: «Всё!»

Сумма с облегчением вздохнула. На груди ее красовалась цифра «2».

Илюша засмеялся.

— А теперь, — сказал он, — обязательно расскажи мне про бочки, про Великого Механика, про яблоки и веретена и вообще…

— Постой, постой! — сказал Радикс. — Не все сразу! Я должен указать еще тебе, наконец, — и прошу это запомнить всерьез и как следует! — что эта картина приближения к пределу не является единственным объяснением явления предела, есть и другие, не менее, а даже более важные. Но она сравнительно проста и для нас с тобой вполне удовлетворительна. А теперь мне нужно задать тебе еще два-три вопросика,

— 224 —

а потом мы пойдем с тобой в гости к двум моим приятелям, которые нас угостят, накормят и напоят чудным кваском. Скажи, пожалуйста: тебе никогда не приходило в голову, для чего применяются в геометрии формулы?

— Чтобы вычислить что-нибудь, ну, например, длину какого-нибудь отрезка или площадь какой-нибудь фигуры…

— Ты говоришь мне о том применении формул в геометрии, с которым тебе до сих пор приходилось иметь дело. Это естественно. Геометрия ведь и родилась из задач по измерению земли, как указывает ее название. Но ведь, кроме размеров фигуры, нас может интересовать и ее форма. Не правда ли?

— Да, конечно.

— А ты никогда не думал, — продолжал его наставник, — нельзя ли с помощью формул определить также вид или форму какой-нибудь линии?

— Не знаю, — ответил Илюша. — Я не совсем понимаю: как это так определить форму? В каком смысле?

— Вот, например, так. Ты, конечно, знаешь, что такое прямая? Попробуй определи мне прямую как геометрическое место.

— Ну, это нетрудно, — отвечал Илюша. — Вот, например, биссектриса. Она прямая, и вместе с тем она есть геометрическое место точек, лежащих внутри данного угла и равноотстоящих от двух его сторон.

— А если рассматривать окружность?

— Окружность есть геометрическое место точек, равноотстоящих от центра, то есть от данной точки.

— Правильно! Но вот ты видишь, что эти два определения дают тебе две линии различной формы. Следовательно, при помощи старинного понятия геометрического места ты можешь определять кривые, различные по форме. Так как на свете очень много кривых линий, а прямая только одна, то мы ее тоже будем причислять к кривым, а потом выясним, как выделить ее из них. Ты узнаешь далее, почему люди так заинтересовались определением именно формы кривых. Но вот еще что: давай нарисуем прямой угол и проведем его биссектрису.

Илюша нарисовал.

— Будем теперь рассматривать этот чертеж как диаграмму, или график. Разделим обе стороны угла на равные промежутки и дадим делениям номера по порядку.

Илюша сделал и это.

— Теперь посмотрим, как расположена относительно сторон угла биссектриса. Когда на горизонтальной стороне мы найдем четвертую точку деления и восстановим из нее пер-

— 225 —

пендикуляр, то он пересечет биссектрису в точке, которая по вертикальной стороне прямого угла соответствует…

— Тоже четвертому делению, — сказал Илюша. — Да ведь так и должно быть, потому что это биссектриса и обе стороны угла расположены симметрично по отношению к биссектрисе. По-моему так!

— Верно, — отвечал Радикс. — Но если так, значит, деления на сторонах угла позволяют нам определить положение точки внутри угла с помощью двух чисел, выражающих расстояния точки от сторон угла. Раз мы это выяснили, то тем самым мы сделали первый шаг к формулам, потому что формулы относятся именно к числам. Эти два числа называются координатами точки. Расстояние от вершины угла до основания перпендикуляра, опущенного на горизонтальную сторону угла, обычно обозначают буквой х и называют абсциссой точки. Горизонтальную сторону угла называют при этом осью иксов, или осью абсцисс. Другую сторону угла называют осью ординат, или осью игреков. Вторую координату точки — ее расстояние от оси абсцисс — обозначают буквой у, называя это число ординатой точки. Ось иксов и ось игреков называют осями координат, а точку их пересечения — началом координат. Очевидно, что для точки, лежащей в начале координат, и х и у равны нулю. Если двигать точку вправо, то значение х будет увеличиваться, а если ты будешь двигаться вверх, то будет расти значение у.

— Ясно. Если я пойду в левую сторону от оси ординат, то мне уже придется значения х считать отрицательными, а если пойду вниз, ниже осп абсцисс, то там надо значения у считать отрицательными.

— Совершенно верно. Теперь ты сможешь определить положение любой точки на плоскости с помощью двух чисел. Ну, а теперь подумаем, нельзя ли нам как-нибудь записать с помощью формулы то свойство биссектрисы, о котором мы только что говорили. Какую бы точку ни взять на биссектрисе, для нее длины перпендикуляров, опущенных на обе стороны угла, должны быть равны…

— 226 —

— То есть абсцисса и ордината всякой точки на биссектрисе равны между собой! — воскликнул Илюша. — Это я понимаю, но как же это записать, если абсцисса и ордината могут принимать какие угодно числовые значения? Когда, например, х равен единице, то и у должен равняться единице; когда х равен двум, то и у равен двум…

Илюша внимательно посмотрел на чертеж, потом на своего друга, немного поколебался и написал:

у = х.

— Правильно! — сказал Радикс. — Если ты будешь искать на плоскости те точки, координаты которых удовлетворяют этому условию, то ты как раз и получишь твою биссектрису.

Мы будем называть такие равенства, переводящие свойства геометрических образов на алгебраический язык, уравнениями кривых. Такие уравнения определяют положение точек по отношению к выбранным координатным осям. Кстати сказать, угол между осями необязательно нужно брать прямой. Вообще можно определять положение точки на плоскости и другими способами, то есть можно применять, как говорят, различные системы координат. Некоторые элементы такого рода системы употреблялись еще в Древней Греции, у Аполлония Пергейского (эллинистическая эпоха, время Архимеда). А у нас здесь самая простая система прямоугольных координат на плоскости. Она потому так называется, что угол между осями прямой. Их называют также декартовыми, по имени замечательного француза, крупнейшего математика и философа Ренэ Декарта, жившего в семнадцатом веке, который впервые ввел их в науку. Их называют еще картезианскими, ибо ведь в то время уче-

1 ... 47 48 49 50 51 52 53 54 55 ... 116
На этом сайте Вы можете читать книги онлайн бесплатно русская версия ВОЛШЕБНЫЙ ДВУРОГ - Сергей Бобров.

Оставить комментарий