Еще в 60-х годах прошлого столетия основоположники отечественной школы космической медицины академики В.В. Парин и О.Г. Газенко разработали концепцию, согласно которой система кровообращения рассматривалась, как индикатор адаптационных реакций целостного организма. Дело в том, что сердечнососудистая система и кровь являются универсальным связующим звеном всех, в том числе и адаптационно-защитных механизмов, протекающих во всех клетках, тканях и органах организма человека. Нейроэндокринные механизмы регуляции гомеостаза складываются из взаимозависимости и взаимосвязи гормональной сферы и вегетативных, симпатических и парасимпатических влияний на важнейшие органы и системы организма, в том числе и на динамику сердечных сокращений в зависимости от различных, в том числе и экстремальных воздействий на организм, что как раз и характерно для космических полетов.
Так, например, было установлено, что такие параметры сердечной деятельности, как частота пульса, вариабельность ритма, изменение мощности дыхательных волн, систолический объем, значительно меняются в различные фазы полета.
Таблица 3
Результаты анализа вариабельности сердечного ритма у космонавта К. на разных участках космического полета
Показатели Диапазон значений нормы За 1 ч до старта За 10 мин до старта В первые минуты полета 3 ч в условиях невесомости 48 ч в условиях невесомости 126 сут в условиях невесомости Частота пульса, уд/мин 60-75 87,4* 93,7** 106,4** 67,9 55,9* 66,8 Среднее квадратичное отклонение, мс 50-100 80 39* 31* 75 83 94 Индекс напряжения регуляторных систем, усл. ед. 50-150 59 123 281* 43 37* 32* Суммарная мощность спектра, с2 2,0 - 5,0 4,46 1,70* 1,06** 4,53 4,20 3,86 Мощность дыхательных волн, % 10-30 3,9** 8.4 28,4 15,6 10,7 4.5** Мощность медленных волн 1-го порядка, % 15-45 15,6 51,8* 26,4 59,9** 53,2* 63,5** Мощность медленных волн 2-го порядка, % 30-50 79,5** 39,8 45,2 25,2 36,1 32,0 Показатель активности регуляторных систем, баллы 1-3 4* 4* 5** 3 3 3
*Умеренное отклонение значения показателя от нормы.
**Выраженное отклонение значения показателя от нормы.
Из сравнительного анализа данных, приведенных в табл. 3, следует, что у космонавта отмечается значительный рост мощности медленных волн 1-го порядка и некоторое снижение мощности спектра медленных волн 2-го порядка, что характерно (в условиях невесомости) для активации вазомоторного центра вследствие перераспределения крови в верхние отделы тела, повышенного наполнения малого круга кровообращения и сосудов головы.
В условиях невесомости практически отсутствует гидростатическое давление крови, что формирует совершенно иную (по сравнению с обычными условиями) ситуацию для систем, регулирующих артериальное давление. При этом вазомоторный центр находится в условиях постоянного напряжения, что проявляется и через 48 ч полета, и на 126-е сутки полета.
Комплексные факторы космического полета влияют также и на водно-солевой баланс (гомеостаз) организма, в частности на поддержание концентрации кальция, натрия, калия. В приводимой табл. 4 представлены данные из монографии А.И. Григорьева и Р.М. Баевского «Здоровье и космос. Концепция здоровья и проблема нормы в космической медицине» (2001).
Таблица 4
Концентрация ионов в сыворотке крови космонавтов до и после длительных космических полетов
Исследуемый показатель n До полета (М = m) До полета CV, % После полета (М = m) После полета CV, % Осмолярность мосм/кг Н2O2 26 286±1,2 2,24 299,9±1,9 3,43 Натрий, ммоль/л 27 142,7±0,43 1,57 143,9±0,44 1,59 Калий, ммоль/л 27 4,46±0,04 5,00 4,13±0,08 9,49 Кальций, ммоль/л 27 2,27±0,02 4,27 2,42±0,02 5,29
Как следует из данных таблицы, у космонавтов, совершивших длительный космический полет, в послеполетный период концентрация натрия не изменилась, содержание калия незначительно уменьшилось, а содержание кальция существенно увеличилось. Как уже указывалось выше, в состоянии невесомости кровь и лимфа перераспределяются преимущественно в краниальном направлении. Сосудистые интерорецепторы реагируют на эти сдвиги, воспринимая их, как избыток жидкости в организме, что вызывает соответствующие адаптивные реакции сердечнососудистой системы, эндокринной системы и почек, направленные на удаление из организма «избытка» жидкости и солей. В итоге в организме формируется новый уровень нормы физико-химических показателей, характерный для условий невесомости.
Регуляция водно-солевого обмена обеспечивается нейро-эндокринными механизмами, изменяющими уровень содержания гормонов в жидкостях организма.
Из данных, представленных в табл. 5 следует, что после полета у космонавтов концентрации альдостерона, вазопрессина, паратгормона и кортизола существенно возрастают. Отмечается и увеличение значения коэффициентов вариации данных показателей. Здесь следует подчеркнуть, что изменения концентрации электролитов (см. предыдущую табл. 4) находятся в пределах ±10 %, в то время, как концентрация гормонов увеличивается на 40 — 140 %.
Таблица 5
Содержание гормонов в сыворотке крови космонавтов до и после длительных космических полетов
Исследуемый показатель n До полета (М±m) До полета CV, % После полета (М±m) После полета CV, % Альдостерон, пг/мл 23 1,71±0,12 34 2,75±0,32 55,6 Вазопрессин, пг/ мл 27 3,49±0,19 29,6 8,22±0,62 38,9 Паратгормон, пг/ мл 20 539±48 39,6 724±86 57,2 Кальцитонин, пг/мл 21 7,39±1,19 74 6,77±1,48 89,1 Кортизон, ммоль/л 21 189±16 60,7 360±48 68,7
Отсюда можно сделать вывод, что при незначительных изменениях со стороны управляемых параметров показатели системы управления (уровень гормонов) отражают активную деятельность регуляторных механизмов организма. Это говорит о значительном напряжении регуляторных систем, поддерживающих постоянство гомеостаза в условиях космического полета.