Шрифт:
Интервал:
Закладка:
2.7 Аналитические модели
Данный класс моделей обладает высочайшей степенью формализации описаний и применяется там, где закономерности протекания процессов и функционирования системы являются хорошо изученными, а сами процессы могут рассматриваться как детерминированные. Нередко аналитические модели справедливо отождествляются с моделями детерминированных процессов. Такие ограничения являются достаточно жесткими, что ограничивает сферу их применения системами, функционирующими в стационарных условиях (т. е. в малой степени подверженных влиянию случайных возмущающих воздействий) или требуют существенного упрощения модели. В качестве примера аналитической модели может рассматриваться модель невозмущенного движения объекта в космическом пространстве.
Аналитическое математическое моделирование — это вид моделирования, в ходе которого основная роль отводится аналитической математической модели, обладающей следующими особенностями:
— аналитическая модель строится на основе некоторой теории или научной гипотезы;
— модель описывает в целом определенный аспект моделируемой системы (процесс в системе) посредством различных математических конструкций (функций или функционалов, алгебраических или дифференциальных уравнений и т. д.);
— модель позволяет получать конечные результаты исследования в виде некоторых формальных соотношений, пригодных для производства количественного или качественного анализа.
Использование ЭВМ при аналитическом моделировании не является обязательным, но решение достаточно сложных задач, сформулированных аналитически, целесообразно сопровождать проведением численных исследований на ЭВМ. Для проведения этих исследований разрабатывается соответствующий алгоритм (алгоритмическая модель), реализующая его программа, формируется массив исходных данных, после чего выполняются расчеты.
Проведению аналитического моделирования может предшествовать построение концептуальной модели с целью установления того, какой именно теоретический аппарат целесообразно использовать для моделирования данной конкретной системы.
Важным достоинством аналитического моделирования является возможность получения на его основе фундаментальных результатов и инвариантных зависимостей, которые могут быть распространены как на различные случаи использования моделируемой системы в тех или иных ситуациях и распространены на случаи рассмотрения других систем данного класса.
Основным же недостатком аналитического моделирования является то, что его применение к сложным системам требует существенной идеализации описания системы. Это связано с разрастанием объемов вычислений даже при несущественном усложнении описаний. Такая идеализация может приводить к неполной адекватности получаемых результатов, к тому, что эти результаты могут использоваться лишь в качестве первого приближения.
Однако, такие результаты могут быть использованы в ходе проведения моделирования с применением имитационных моделей в качестве неких опорных величин, относительно которых осуществляется дальнейшее исследование системы.
2.8 Имитационные модели
Данная разновидность моделей неразрывно связана с идеей машинного эксперимента. Собственно, имитационная модель — это модель комплексная, к которой не предъявляется строгих требований к применению моделей какого-то заданного типа. Идеология многомодельного исследования целиком основывается именно на этом типе моделей.
Имитационная модель — это комплексное логико-математическое представление системы, реализованное в виде программы, предназначенной для решения на ЭВМ, включающее в себя модели различного типа, и рассматривающее аспект функционирования динамической системы во времени. Данный класс моделей применяется при невозможности строгого аналитического решения задачи или проведения натурного эксперимента. Имитационные модели служат для изучения поведения во времени сложной неоднородной динамической системы, относительно структуры которой существуют точные знания или детализированные гипотезы. Для каждого элемента или подсистемы моделируемой системы в памяти ЭВМ формируется блок данных, характеризующих ее текущее и предшествующие состояния, блок логических и вычислительных процедур, описывающих изменения критических параметров во времени, а также производятся вычисления этих параметров на основе заданных значений.
Комплекс подпрограмм или относительно автономных программных агентов функционирует под управлением программы-супервизора, осуществляющей диспетчеризацию вызовов, активизирующей и приостанавливающей на время выполнение тех или иных процедур в соответствии с планом машинного эксперимента, имитируя тем самым поведение системы. В результате машинного эксперимента формируются массивы данных о состоянии различных параметров системы в различные моменты времени с привязкой к системным событиям, имитируемым в ходе эксперимента.
При этом программа-супервизор управляет процессом имитации случайных возмущающих воздействий, от которых зависит функционирование системы в целом и ее элементов и подсистем. Широкое применение здесь находит метод Монте-Карло, ранее упоминавшийся нами.
Имитационная модель — это инструмент исследования, посредством которого могут осуществляться и манипуляции с масштабом времени функционирования модели. Различают имитационные модели, функционирующие как в натуральном, так и в замедленном или ускоренном масштабе времени. Это является крайне важным при анализе поведения систем, для наблюдения которых отсутствует возможность воспользоваться натуральным масштабом времени. К разряду таких систем могут быть отнесены экосистемы, популяции, системы, в которых протекают скоротечные физические процессы и иные.
К числу наиболее памятных для человечества имитационных моделей могут быть отнесена модель глобальной ядерной войны, приведшая к укоренению в обиходе политиков и военных термина «ядерная зима». Эта модель оказала существенное влияние на международную обстановку и на долгое время снизила накал гонки вооружений. Но уроки не идут впрок — все забывается и новые политики безответственно манипулируют терминами «превентивный удар» и иными, столь же абсурдными.
Частным случаем имитационных моделей являются модели ситуационные. Ситуационные модели — это модели, используемые при решении задач с неопределенностью, исходя из совокупности ситуаций. В отличие от других моделей, основанных на заданном графе функционирования системы, для ситуационной модели такой граф неизвестен. Однако существует набор прецедентов ситуаций, обладающих малым прогностическим потенциалом. Под ситуацией будем понимать временное отношение, сложившееся между ее объектами-участниками, либо между состояниями этих объектов.
Соответственно, под ситуационным моделированием будем понимать метод анализа некоторой системы с применением ситуационной модели, с требуемой степенью адекватности отображающую логическую, временную, пространственную структуру процессов, а также характер и структуру информации о состоянии системы и изменении образующих ее элементов.
Для создания ситуационных моделей требуется решить следующие задачи:
— создать информационную модель фрагмента реального мира, в которой каждому явлению, процессу или участнику будет соответствовать уникальный информационный аналог;
— обеспечить сбор и регистрацию информации об изменениях ситуации во времени, пространстве и пространстве введенных признаков;
— оценить прогностический потенциал тех или иных ситуаций (что связано с инерционностью вовлеченных в ситуацию объектов и системы в целом и т. п.).
Поскольку граф, описывающий последовательность переходов, для ситуационных моделей в общем случае не определен, постольку целесообразно рассматривать вариант представления ситуационной модели в виде обобщенной семантической сети (см. определение, данное ранее). Одна из разновидностей семантических сетей — сценарий, как нельзя лучше подходит для этой цели.
В целом структура ситуационной модели определяется субъективными особенностями восприятия и свойственным аналитику способом разложения ситуации на составляющие. Это вызвано тем, что эксперт-аналитик, осуществляющий процедуру синтеза ситуационной модели, формулирует свои собственные критерии, соответствующие пребыванию системы в том или ином состоянии.
3. Аналитика как интерфейс между теорией и практикой
Говоря о посреднической (интерфейсной) функции аналитики, мы указываем на роль аналитики как некоторого средства, обеспечивающего связь между потребностями, существующими в практической сфере управления, и возможностями, предоставляемыми теоретико-методологическим блоком аналитики, рассмотрению которого были посвящены предыдущие разделы этой главы.
- Кадровое обеспечение предпринимательства: стили и методы управления персоналом - Валерий Пилявский - Прочая научная литература
- Высшее образование: методология и опыт проектирования - Ю. Татур - Прочая научная литература
- Целостный метод – теория и практика - Марат Телемтаев - Прочая научная литература