Оставляя в стороне ракетно-космическую и ядерную промышленность, мы рассмотрим, как развивалось в послевоенное время авиационное моторостроение. Прежде всего, эвакуированные во время войны моторные заводы остались на месте эвакуации: Воронежский № 16 — в Казани, Московский № 24 (им. Фрунзе) — в Самаре (Куйбышеве), Рыбинский № 26 — в Уфе, Запорожский № 29 (им. Баранова) — в Омске. Но на прежних площадках возникли «из ничего» новые «номерные» заводы: в Москве на площадке у метро «Семеновская» — № 45, в Тушино — № 500, в Рыбинске — № 36, в Запорожье — № 478. Откуда в разрушенной стране взялось оборудование для оснащения этих заводов? Из Германии, больше неоткуда. Всего из Германии в качестве репараций было демонтировано и вывезено в СССР 5,5 тысячи предприятий разного профиля [41]. Так, к примеру, возникло и знаменитое J10M0 (Ленинградское оптико-механическое объединение) на основе известной немецкой фирмы «Карл Цейсс — Йена». Перепало кое-что — и немало — и новым авиамоторным заводам.
Практическое удвоение промышленных мощностей авиамоторных заводов не было прихотью. В первой послевоенной пятилетке 1946–1950 гг. нужно было полностью перевооружить ВВС новой техникой. Планировалось за пятилетку построить около 25 тыс. самолетов, в том числе 5 тыс. реактивных [41]. И самолетов, и моторов, и моторов современных, нужно было много. Не нужно забывать, что ресурсы тогдашних авиамоторов были небольшие — 100 часов. Заводы работали непрерывно, шесть дней в неделю в три смены. Тогда суббота была еще рабочим днем. Днем и ночью шли приемо-сдаточные испытания моторов, работавших без всякого шумоглушения. Те, кто жил неподалеку, летом редко открывали окна — гул стоял страшенный. Особенно доставалось тем, кто жил в домах прямо напротив испытательных станций. Был и фольклор на эту тему: «гудит родной завод, как улей, анам-то х…ли».
В США ситуация была такая же — моторы пекли, как пироги. Единственно, что третьей смены, вероятно, не было. Иллюстрацией этого интенсивного производства в США служит фотография одновременной подготовки к сдаточным испытаниям пяти реактивных двигателей J-35-GE на пяти рядом расположенных стендах — продукции завода за одну рабочую смену. Картина сильно напоминает брейгелевскую «Крестьянскую свадьбу» («Bauernhochzeit») с разноской кушаний.
Массовое производство первых реактивных двигателей в США. в 1940-е гг. Подготовка к сдаточным испытаниямДислокация советских конструкторских бюро тоже изменилась после войны. Главные конструкторы, те, кто побойчее, попытались выйти из стесняющей их действия орбиты серийных заводов, создав собственную опытно-производственную базу и всеми силами перебраться в столицу. Все-таки функции серийного завода и ОКБ сильно отличались: загрузить серийный завод опытными разработками удавалось с большим трудом. Заслуженное КБ В. Я. Климова обратно из Уфы в Рыбинск не вернулось, оно получило обозначение ОКБ-117 и, переместившись в Ленинград, занялось турбореактивной тематикой. Известное КБ Микулина, получившее обозначение ОКБ-300, тоже переехало из самарской эвакуации, обосновавшись в Москве на новой площадке вблизи Лужников. Возникли и новые конструкторские бюро, которые в скором времени займут передовые позиции в турбореактивной технике. Это прежде всего А. М. Люлька (ОКБ-165) и выходец из климовского ОКБ Н. Д. Кузнецов (госзавод № 2). В Запорожье вернулся (уже как главный конструктор) в 1945 г. уехавший с заводом в эвакуацию (г. Омск) А. Г. Ивченко. Там он занимался сопровождением серийного производства запорожского мотора М-88 и швецовского АШ-62ФН. Последнее время он был заместителем Швецова на омском заводе.
Все эти КБ создадут новые турбореактивные двигатели, ставшие хорошо известными своими персональными «брендами»: ВК (Валерий Климов), AM (Александр Микулин), АЛ (Архип Люлька), ВД (Владимир Добрынин), НК (Николай Кузнецов), АИ (Александр Ивченко). В конце 1980-х к этим маркам двигателей «отцов-основателей» моторных КБ добавится последняя — ПС (Павел Соловьев). Это единственный случай, когда персональные инициалы преемника, а не основателя ОКБ-19 (Аркадия Швецова) войдут в марку двигателя. И обусловлено это будет признанием заслуг П. А. Соловьева в разработке турбореактивных двигателей.
И здесь нужно сказать несколько слов о том, в чем же заключается функция главного конструктора двигателей. Безусловно, двигатель является продуктом коллективного труда множества специалистов. Но есть вопросы и решения, прерогатива которых находится в компетенции главного конструктора и никого более. Главный конструктор определяет облик будущего двигателя: размерность, газодинамическую схему и уровень предельных параметров. Эти параметры главный конструктор выбирает исходя из своих представлений о двух взаимно противоречивых требованиях: перспективности будущего двигателя и степени риска его создания за ограниченное время. Очевидно, что чем перспективнее проектируемый двигатель, тем больше степень риска его создания к сроку. И наоборот, чем меньше риски создания двигателя, тем менее перспективным он будет. Никакая теория не может дать здесь решение — все полностью зависит от интуиции, опыта главного конструктора. Успехи и провалы, которыми усеян путь авиационного моторостроения, обусловлены как раз оказавшимися верными или неверными оценками соотношения перспективности и риска.
Социальный статус генеральных конструкторов двигателей был велик: они назначались и освобождались от работы по постановлению ЦК КПСС, а не простым приказом министра. Благодаря этому статусу генеральные конструкторы были относительно независимы, имели прямую телефонную связь с оборонным отделом ЦК, руководством Минобороны и ВВС. В бытность, когда министром обороны был влиятельный член Политбюро Д. Ф. Устинов (в просторечии «дядя Дима»), генеральный конструктор мог обращаться к нему напрямую. Формально подчиняясь министру, генеральные конструкторы находились на одном с ним уровне.
В чем же количественно выражается перспективность авиационного двигателя? Коэффициент полезного действия, т. е. степень преобразования хаотического движения молекул (тепло) в упорядоченное (работу), выражается в виде термического кпд
для идеального термодинамического цикла Карно. Здесь минимальная температура рабочего тела — это температура окружающей среды, а максимальная температура — это максимальная температура газа в начале расширения, т. е., перед турбиной. Таким образом, главный параметр, отражающий технический прогресс в газотурбостроении, — это уровень температуры газа перед турбиной. Здесь температура отсчитывается по термодинамической шкале, где за 0 принят уровень -273 градуса Цельсия. Смысл этой шкалы заключается в том, чтобы исключить отрицательные значения температур, неудобные для термодинамических вычислений. Из выражения кпд теплового двигателя видно, что даже в случае отсутствия потерь, например, на трение, идеальный кпд никогда не достигает 1, т. е. 100 %.
(adsbygoogle = window.adsbygoogle || []).push({});