Шрифт:
Интервал:
Закладка:
Схема на рис. 9.12 представляет собой лабораторный источник питания, который, как я обещал вам еще в главе 2, можно изготовить самим. Взглянув на эту схему, вы можете сначала слегка растеряться — настолько вам покажется все незнакомо. На самом деле там есть только одна вещь, которую мы еще «не проходили», — микросхема операционного усилителя (ОУ) DA1. Подробно с ОУ мы будем знакомиться в главе 12, а сейчас нам важно только вот что: ОУ всегда стремится сделать так, чтобы потенциалы входов, обозначенных «плюс» и «минус», были равны. Эти входы эквивалентны входам дифференциального усилителя, у которого, как вы помните, потенциалы входов тоже связаны между собой (на самом деле внутри микросхемы на входе ОУ действительно стоит дифференциальный каскад).
Рис. 9.12. Схема лабораторного источника питания
Для того чтобы это осуществлялось на практике, ОУ включают с отрицательной обратной связью с выхода на тот вход, который обозначен знаком «минус». В схеме, показанной на рис. 9.12, такая связь осуществляется весьма заковыристым способом, и для того чтобы понять, как это происходит, давайте посмотрим на рис. 9.13, на котором изображена та же самая схема, но в предельно упрощенном варианте.
Рис. 9.13. Упрощенная схема лабораторного источника питания
Предположим, что R1 и R2 на рис. 9.13 равны между собой. Какое напряжение будет на выходе, т. е. на эмиттере транзистора VT1? Определить это очень просто. Если на «плюсовом» входе ОУ напряжение 1 В, как обозначено на схеме, то на минусовом тоже должен быть 1 В, как мы только что узнали. При каком условии это возможно? Только если на верхнем выводе R1, т. е. на выходе всей системы, будет 2 В — ведь R1 и R2 делят это напряжение пополам. То есть ОУ автоматически установит на базе транзистора VT1 такое напряжение, чтобы на его эмиттере было ровно 2 В (можно даже догадаться, какое именно — на 0,6 В больше, чем на выходе, т. е. 2,6 В, но на самом деле это нас мало интересует). А если предположить, что R1 в два раза больше, чем R2? Повторив предыдущие рассуждения, мы обнаружим, что на выходе должно быть 3 В. Отсюда можно вывести некоторую закономерность: система, показанная на рис. 9.13, усиливает напряжение, поданное на «плюсовой» вход, ровно в (R1/R2 +1) раз.
Именно так и работает схема источника на рис. 9.12. Переключатель П1 имеет 6 положений, в каждом из которых он изменяет соотношение делителя в обратной связи таким образом, чтобы при напряжении 1 В на «плюсовом» входе на выходе получался некий ряд фиксированных напряжений. При указанных в таблице номиналах резисторов R4-R10 этот ряд будет следующим: 3; 5; 7,5; 10; 12 и 15 В, чего достаточно для большинства наших нужд.
Конечно, можно не возиться с переключателем и подбором сопротивлений, а просто поставить вместо цепочки R5-R9 переменный резистор, равный сумме этих сопротивлений, по схеме потенциометра — эффект будет таким же, только напряжение станет меняться плавно: от 3 до 15 В. Однако иметь набор фиксированных напряжений намного удобнее — тут вы получите точно известное напряжение, а при плавной регулировке его каждый раз придется подгонять по вольтметру. Разумеется, бывают изредка ситуации, когда нужно получить напряжение, скажем, 4,75 вольта, но на этот случай лучше завести отдельный плавно регулируемый источник.
Делитель можно устроить совершенно по-разному — возьмите переключатель на 12 положений — получите переключение через 1 В. Пересчитать номиналы резисторов из описанного ранее общего соотношения несложно: так, если хочется вместо 10 В в приведенном ряду иметь 9 В, то номинал R8 следует увеличить до 224 Ом, a R7 — уменьшить до 205 Ом (при этом сумма сохранится, и остальные напряжения не изменятся). Можно добавить переменный резистор и плавно регулировать напряжение внутри каждого фиксированного диапазона. (Подумайте, как это сделать? Подсказка: переключатель должен быть на два направления.) Отметим, что в этой схеме применять прецизионные резисторы С2-29В совершенно необязательно — не те точности требуются. Поэтому можно требуемые номиналы просто подобрать из набора обычных, стараясь выдержать их как можно ближе к расчетным. Допускается также весь расчетный ряд умножить или поделить на любое число, лишь бы все значения изменились в одинаковой степени. Границы, которыми следует при этом руководствоваться, — это нижний предел суммы всех резисторов в 1–2 кОм, а верхний — в пару десятков килоом.
Теперь перейдем к подробному рассмотрению остальных, вспомогательных узлов схемы. Монструозная конструкция с полевым транзистором наверху на самом деле всего лишь узел, который позволяет получить стабильное опорное напряжение ровно 1В — от его стабильности точность шкалы выходных напряжений зависит напрямую.
В педагогических целях рассмотрим подробнее, как работает такая древняя схема. Полевой n-канальный транзистор VT1 включен источником тока, известным нам из главы 6 — когда потенциалы затвора и истока равны, то ток сток-исток мало зависит от напряжения на стоке. Этот ток питает прецизионный стабилитрон VD1 типа КС818Е, напряжение которого мало зависит от температуры (но очень даже зависит от тока). Если будете искать замену транзистору VT1, то в первую очередь надо смотреть на параметр, который называется начальный ток стока — именно такой ток будет протекать через стабилитрон в этой схеме, а стабилитрон Д818Е хорошо работает довольно в узком диапазоне токов: не менее 5 и не более 15 мА. Напряжение стабилизации стабилитрона равно 9 В, поэтому оно подается на делитель, составленный из большего постоянного (R1) и меньшего подстроечного (R2) резистора «под отвертку», с движка которого и снимается напряжение, равное 1 В.
Вместо всей этой конструкции, конечно, можно поставить небольшую микросхему — источник опорного напряжения или просто любой стабилизатор из серии LM, только сопротивление R1 придется пересчитать так, чтобы в среднем положении движка R2 на нем сохранилось около 1 В. Потенциометром этим можно плавно менять всю шкалу напряжений на выходе (но до определенного предела, ограниченного как снизу, так и сверху). Разумеется, эту цепочку вполне можно заменить двумя постоянными резисторами.
Теперь перейдем к транзистору VT3 вкупе с резистором R3. Эта простая и остроумная конструкция выполняет важнейшую функцию — она ограничивает выходной ток. Как это происходит? Обратите внимание, что весь выходной ток протекает через резистор R3, номинальное значение которого всего 0,3 Ом. В нормальном состоянии (например, на холостом ходу) падение напряжения на этом резисторе мало, поэтому транзистор VT3 закрыт, и весь этот фрагмент не оказывает никакого влияния на работу схемы. Когда же выходной ток достигает значения примерно 2 А, падение напряжения на нем достигает сакраментальных 0,6 В, транзистор VT3 приоткрывается и начинает шунтировать переход база-эмиттер силового транзистора VT2, призакрывая его. В результате схема приходит в равновесие — если бы VT3 приоткрылся еще больше, закрывая силовой транзистор, выходной ток бы упал, падение напряжения на R3 бы уменьшилось, VT3 бы призакрылся, ну и т. д. — и все застывает на уровне 2 А выходного тока, даже при коротком замыкании на выходе! Как только избыточная нагрузка на выходе будет снята, схема автоматически вернется в нормальный режим. Если вместо резистора R3 поставить переключатель с набором сопротивлений, то можно регулировать уровень стабилизации выходного тока. Так, набор резисторов 0,3; 0,6; 1,2; 2,4; 6 и 62 Ом дадут ряд ограничений тока на уровне 2; 1; 0,5, 0,25 А, 100 и 10 мА.
Кстати, к следящему транзистору VT3 никаких требований не предъявляется — т. е., вообще никаких — можно взять любой кремниевый транзистор, только он должен быть маломощным (чтобы не шунтировать силовой транзистор токами утечки) и не составным по схеме Дарлингтона. А вот силовой транзистор, наоборот, должен быть именно дарлингтоновский, с «супербетой».
В этой схеме есть одно, однако большое НО. Заключается оно в том, что при коротком замыкании на выходе все напряжение питания будет падать на переходе коллектор-эмиттер транзистора VT2 — ему больше просто некуда деваться. То есть, выделяющаяся мощность на VT2 составит аж целых 40 Вт! И в нормальном режиме при маленьких установленных выходных напряжениях (3 или 5 В) и максимальной нагрузке эта мощность будет практически такой же. В этом и заключается главный недостаток рассматриваемой схемы, общий для всех линейных стабилизаторов — крайне низкий КПД.
Есть, впрочем, немало способов этот КПД повысить. Продаю идею простейшего из них, который годится именно для стабилизатора с дискретным набором выходных напряжений: надо взять трансформатор нестабилизированного источника, от которого питается вся эта схема, с несколькими обмотками на разное напряжение, а к переключателю делителя добавить еще одно направление переключения так, чтобы при снижении напряжения на выходе напряжение питания стабилизатора также снижалось (с учетом того, что минимальный перепад между входом и выходом здесь должен составить не менее 4–5 В, а если используется стабилитрон, как на рис. 9.12, то напряжение на входе должно быть не меньше 12 В). Есть и более изощренные способы — скажем, регулировать действующее значение выпрямленного пульсирующего напряжения перед фильтром с помощью тиристорного моста. Но в таком случае схема настолько усложняется, что проще просто взять и построить импульсный источник.
- Твой друг электроника - Ю. Верхало - Радиотехника
- В помощь радиолюбителю. Выпуск 13 - Михаил Адаменко - Радиотехника
- В помощь радиолюбителю. Выпуск 7 - Вильямс Никитин - Радиотехника