Читать интересную книгу Занимательная физика. Книга 2 - Яков Перельман

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 41 42 43 44 45 46 47 48 49 ... 53

Рисунок 142. Рассматривая эту сетку издали, легко различить на ней глаз и часть носа женского профиля, обращенного вправо.

Вы, конечно, подумаете, что это какой-нибудь искусный «трюк» изобретательного гравера. Нет, это лишь грубый пример той иллюзии зрения, которой мы поддаемся всякий раз, когда рассматриваем так называемые «тоновые» иллюстрации, или «автотипии». В книгах и журналах фон рисунка всегда кажется нам сплошным; но рассмотрите его в лупу, — и перед вами появится такая же сетка, какая изображена на рис. 142. Этот озадачивший вас Рисунок представляет собой не что иное, как увеличенный раз в 10 участок обыкновенной тоновой иллюстрации. Разница лишь в том, что, когда сетка мелка, она сливается в сплошной фон уже на близком расстоянии, на том, на каком мы обыкновенно держим книгу при чтении. Когда же сетка крупна, слияние происходит на большем расстоянии. Читатель без труда поймет все сказанное, если вспомнит наши рассуждения относительно угла зрения.

Необыкновенные колеса

Случалось ли вам через щели забора или, еще лучше, на экране кино следить за спицами колес быстро движущейся повозки или автомобиля? Вероятно, вы замечали при этом странное явление; автомобиль мчится с головокружительной быстротой, колеса же едва вертятся, а то и вовсе не вертятся. Мало того: они вращаются иной раз даже в противоположном направлении!

Эта иллюзия зрения так необычайна, что приводит в недоумение всех, кто замечает ее впервые.

Объясняется она следующим образом. Следя за вращением колеса через щели в заборе (перемещая взгляд вдоль забора), мы видим колесные спицы не непрерывно, а через равные промежутки времени, так как доски забора каждое мгновение заслоняют их от нас. Точно так же и кинематографическая лента запечатлевает изображение колес с перерывами, в отдельные моменты (24 кадра в секунду).

Здесь возможны три случая, которые мы сейчас и рассмотрим один за другим.

Во-первых, может случиться, что за время перерыва колесо успеет сделать целое число оборотов — безразлично сколько, 2 или 20, только бы число это было целое. Тогда спицы колеса на новом снимке займут то же положение, что и на прежнем. В следующий промежуток колесо сделает опять целое число оборотов (величина промежутка и скорость автомобиля не изменяются), — и положение спиц остается прежнее. Видя все время одно положение спиц, мы заключаем, что колесо вовсе не вернется (средний столбец рис. 143).

Рисунок 143. Причина загадочного движения колес на экране кино.

Второй случай; колесо успевает в каждый промежуток сделать целое число оборотов и еще часть оборота, весьма небольшую. Наблюдая за сменой таких изображений, мы о целом числе оборотов не будем и догадываться, а увидим лишь медленное вращение колеса (каждый раз на небольшую долю оборота). В результате нам покажется, что, несмотря на быстрое перемещение автомобиля, колеса вращаются медленно.

Третий случай: в течение промежутка между съемками колесо делает неполный оборот, отличающийся от полного на небольшую долю (например, поворачивается на 315°, как в третьем столбце рис. 143). Тогда какая-либо определенная спица будет казаться вращающейся в обратном направлении… Это обманчивое впечатление будет до тех пор, пока колесо не изменит скорости вращения.

Остается внести маленькие дополнения в наше объяснение. В первом случае мы, ради простоты, говорили о числе полных оборотов колеса; но так как спицы колеса похожи одна на другую, то достаточно, чтобы колесо повернулось на целое число промежутков между спицами.

То же относится и к другим случаям.

Возможны и еще курьезы. Если на ободе колеса имеется метка, спицы же все похожи друг на друга, то случается, что обод движется в одном направлении, спицы же бегут в обратном! Если же имеется метка на спице, то спицы могут двигаться в обратном направлении, нежели метка, — она будет словно перескакивать со спицы на спицу.

Когда в кино показывают обыкновенные сцены, иллюзия эта мало вредит естественности впечатления. Но если хотят на экране объяснить действие какого-нибудь механизма, то этот обман зрения может породить серьезные недоразумения и даже совершенно извратить представление о работе машины.

Внимательный зритель, видя на экране мнимо-неподвижное колесо мчащегося автомобиля, легко может, сосчитав его спицы, судить до некоторой степени о том, сколько оборотов делает оно в секунду. Обычная быстрота подачи ленты — 24 кадра в секунду. Если число спиц автомобильного колеса 12, то число его оборотов в секунду равно 24:12, т. е. 2, или по одному целому обороту в 0,5 секунды. Это — наименьшее число оборотов; оно может быть и больше в целое число раз (т. е. вдвое, втрое и т. д.).

Оценив величину диаметра колеса, можно делать заключения и о скорости движения автомобиля. Например, при диаметре колеса 80 см имеем в рассмотренном случае скорость около 18 км/час (или 36 км/час, или 54 км/час и т. д.).

Рассмотренная сейчас иллюзия зрения используется техникой для подсчета числа оборотов быстро вращающихся валов. Объясним, на чем основан этот способ. Сила света лампы, питаемой переменным током, не остается постоянной: через каждую сотую долю секунды свет ослабевает, хотя при обычных условиях мы никакого мерцания но замечаем. Но представим себе, что таким светом освещен вращающийся диск, изображенный на рис. 144. Если диск вращается так, что делает 0,25 оборота в сотую долю секунды, то произойдет нечто неожиданное: вместо обычного ровного серого круга глаз увидит черные и белые секторы, словно бы диск оставался неподвижен.

Рисунок 144. Диск для определения скорости вращения двигателя.

Причина явления, надеюсь, понятна читателю, разобравшемуся в иллюзии с автомобильными колесами. Легко догадаться также, как возможно применить это явление для подсчета оборотов вращающегося вала.

«Микроскоп времени» в технике

В первой книге «Занимательной физики» описана «лупа времени», основанная на использовании киноаппарата. Здесь расскажем о другом способе достижения подобного же эффекта, опирающемся на явление, которое было рассмотрено в предыдущей статье.

Мы знаем уже, что, когда диск с зачерненными секторами (рис. 144), делающий 25 оборотов в секунду, освещается ежесекундно 100 вспышками лампы, он кажется глазу неподвижным. Представьте себе, однако, что число вспышек сделалось равным 101 в секунду. В течение промежутка между такими двумя последовательными учащенными вспышками диск не успеет повернуться, как прежде, на полную четверть оборота, и, значит, соответственный сектор не дойдет до первоначального положения.

Глаз увидит его отставшим на сотую долю окружности. При следующей вспышке он покажется отставшим еще на сотую долю окружности и т. д. Нам покажется, что диск вертится назад, делая один оборот в секунду. Движение замедлилось в 25 раз.

Нетрудно сообразить, как можно увидеть то же замедленное вращение, но не в обратную сторону, а в нормальном направлении. Для этого нужно число вспышек света не увеличить, а уменьшить. Например, при 99 вспышках в секунду диск покажется вращающимся вперед, делая один оборот в секунду.

Мы имеем здесь «микроскоп времени» с 25-кратным замедлением. Но вполне возможно получить еще большее замедление. Если, например, число вспышек доведено до 999 в 10 секунд (т. е. 99,9 в секунду), диск будет казаться совершающим 1 оборот в 10 секунд; он имеет, значит, 250-кратное замедление.

Любое быстрое периодическое движение можно изложенным приемом замедлить для нашего глаза в желаемой степени. Это дает удобную возможность изучать особенности движения весьма быстрых механизмов, замедляя их движение нашим «микроскопом времени» в 100, в 1000 и т. д. раз[73].

Рисунок 145. Измерение скорости полета пули.

Опишем в заключение способ измерения скорости полета пули, основанный на возможности точно определять число оборотов вращающегося диска. На быстро вращающийся вал надевают картонный диск с зачерненными секторами и загнутыми краями, так что диск имеет форму открытой цилиндрической коробки (рис. 145). Стрелок пускает пулю вдоль диаметра этой коробки, пробивая ее стенку в двух местах. Если бы коробка была неподвижна, оба отверстия лежали бы на концах одного диаметра. Но коробка вращалась, и за то время, пока пуля летела от края до края, коробка успела немного повернуться, подставив пуле взамен точки b точку c. Зная число оборотов коробки и ее диаметр, можно по величине дуги bc вычислить скорость движения пули. Это — несложная геометрическая задача, с которой без труда справятся читатели, немного владеющие математикой.

Диск Нипкова

Замечательное техническое применение обмана зрения представлял так называемый «диск Нипкова», употреблявшийся в первых телевизионных установках. На рис. 146 вы видите сплошной круг, у краев которого разбросана дюжина дырочек с просветом 2 мм; дырочки расположены равномерно по спиральной линии, каждая на величину просвета ближе к центру, чем соседняя. Такой диск не обещает как будто ничего особенного. Но установите его на оси, устройте перед ним окошечко, а позади поместите таких же размеров картинку (рис. 147). Если теперь привести диск в быстрое вращение, то произойдет неожиданное явление: картинка, заслоняемая неподвижным рис. 148. диском, становится при его вращении отчетливо видимой в переднее окошечко. Замедлите вращение — картинка сделается смутной и, наконец, при остановке диска исчезает совершенно; теперь от картины остается видимым лишь то, что можно рассмотреть сквозь крошечную двухмиллиметровую дырочку.

1 ... 41 42 43 44 45 46 47 48 49 ... 53
На этом сайте Вы можете читать книги онлайн бесплатно русская версия Занимательная физика. Книга 2 - Яков Перельман.

Оставить комментарий