Шрифт:
Интервал:
Закладка:
Поскольку мы весьма невежественны по части внутреннего устройства черных дыр, я сказал Крису и Полу, что изображая то, что Купер видит внизу (то, что приближается к нему по мере его падения), они могут дать волю своей фантазии. Я попросил их лишь об одном: «Пожалуйста, не показывайте внутри черной дыры Сатану и адское пламя, как это было в фильме студии Диснея». В ответ Крис и Пол захихикали. Само собой, у них и в мыслях такого не было.
Когда мне показали, что у них в итоге вышло, я счел их решение весьма разумным. Глядя вниз, Купер видит свет от объектов, которые упали в Гаргантюа раньше него и все еще продолжают падать. Сами объекты не должны для этого испускать свет: Купер видит их, поскольку они отражают свет аккреционного диска — так мы видим Луну, отражающую свет Солнца. Думаю, большая часть этих объектов — межзвездная пыль, чем объясняется то, что Купер видит туман.
Также Купер может догонять объекты, падающие медленнее, чем он сам. Этим можно объяснить белые хлопья, которые ударяются о «Рейнджер» и отлетают от него.
Спасительный тессеракт
В Кип-версий, когда «Рейнджер» приближается к вылетающей сингулярности, он сталкивается с нарастающими приливными силами. В последний момент Купер катапультируется, и приливные силы разрывают «Рейнджер» на части — он разламывается надвое. У края сингулярности Купера поджидает тессеракт, который, видимо, поместили сюда сущности из балка (рис. 28.4).
Рис. 28.4. Купера вот-вот подхватит тессеракт, находящийся у края сингулярности. «Рейнджер» и Купер изображены гораздо больше, чем должны быть; к тому же они двумерны, поскольку одно пространственное измерение на этом рисунке опущено29. Тессеракт
В «Интерстеллар» издалека тессеракт выглядит как сфера, покрытая узором из светящихся квадратов. Каждый квадрат — это торец стержня. Попав в тессеракт, оцепеневший и дезориентированный Купер падает в шахту между стержнями, то и дело задевая что-то, напоминающее кирпичи, из которых сложены стены шахты, хотя на деле оказывается, что это книги. «Шахта» ведет в большой зал; Купер плавает в нем и постепенно начинает понимать, что к чему.
Этот зал — одна из трехмерных граней четырехмерного тессеракта в уникальной трактовке Кристофера Нолана, с доработками от Пола Франклина и его команды по созданию визуальных эффектов. Зал и окружающее его пространство в высшей степени сложны и необычны. Когда я увидел это впервые, я был сбит с толку не меньше Купера, хоть и знаю, что такое тессеракт. Крис и Пол настолько усложнили тессеракт, что, лишь поговорив с ними, я окончательно разобрался в его структуре.
Вот то, что я знаю и что понял. Я начну с обычного, простого тессеракта, а затем перейду к усложненному тессеракту Криса.
Точка — линия — квадрат — куб — тессеракт
Обычный тессеракт — это гиперкуб, куб в четырех измерениях. С помощью рис. 29.1 и 29.2 я по шагам объясню, что это значит. Если мы возьмем точку (рис. 29.1 сверху) и будем двигать ее в одном измерении, мы получим линию (точнее отрезок). Два конца линии можно представить как две грани шириной в одну точку. Линия обладает одним измерением (вдоль которого она тянется), а у ее «граней» на одно измерение меньше — то есть ноль.
Если мы возьмем линию и будем двигать в перпендикулярном ей измерении (рис. 29.1 посередине), то получим квадрат. У квадрата четыре грани, и это линии. У квадрата два измерения, а у его граней на одно измерение меньше — то есть одно.
Если мы возьмем квадрат и будем двигать в перпендикулярном ему измерении (рис. 29.1 снизу), то получим куб. У куба шесть граней, и это квадраты. У куба три измерения, а у его граней на одно меньше — то есть два.
Следующий шаг нетрудно предугадать, но чтобы его изобразить, мне придется перерисовать куб так, как вы бы его видели, если бы находились прямо перед одной из оранжевых граней (рис. 29.2 сверху). Если теперь перемещать первоначальный (темно-оранжевый) квадрат, чтобы образовался куб, покажется, что квадрат, став ближней гранью куба, увеличился в размере.
Теперь, если мы возьмем куб и будем его двигать в измерении, которое перпендикулярно ему (рис. 29.2 снизу), то получим тессеракт. Изображенный тессеракт похож на два куба, один внутри другого. На картинке внутренний куб расширился наружу, образуя четырехмерный объем тессеракта. У тессеракта восемь граней, и это кубы. Сможете найти все восемь? Тессеракт обладает четырьмя пространственными измерениями, а у его граней на одно измерение меньше — то есть три. У тессеракта и его граней общее временное измерение, не показанное на рисунке.
Зал, где оказывается Купер, — это одна из восьми кубических граней тессеракта — хотя, как я уже говорил, Крис и Пол хитроумно модифицировали его. Перед тем как рассказать о внесенных ими усовершенствованиях, я, чтобы дать свою интерпретацию самых первых сцен в тессеракте, воспользуюсь обычным тессерактом.
Рис. 29.1. От точки к линии, от линии к квадрату, от квадрата к кубу Рис. 29.2. От куба к тессерактуКупер путешествует в тессеракте
Поскольку Купер состоит из атомов, которые удерживаются вместе электрическими и ядерными силами и которые могут существовать только в трех пространственных измерениях и одном временном, он вынужден находиться лишь в одной из трехмерных граней тессеракта (в кубе). Купер не может ощутить четвертое пространственное измерение тессеракта. На рис. 29.3 показано, как он плавает внутри одной из граней тессеракта, границы которой я обвел фиолетовыми линиями.
Рис. 29.3. Купер внутри трехмерной грани тессерактаВ Кип-версий тессеракт поднимается из сингулярности в балк. Будучи объектом с тем же количеством пространственных измерений (четыре), он чувствует себя в балке прекрасно. И переносит трехмерного Купера, расположившегося в одной из трехмерных граней, через балк.
Теперь вспомним, что расстояние от Гаргантюа до Земли равно примерно 10 миллиардам световых лет, если измерять его в нашей бране (нашей Вселенной с ее тремя измерениями). Однако если измерить это расстояние в балке, оно составит всего лишь около 1 а. е. (расстояние от Солнца до Земли), см. рис. 23.7. Поэтому, перемещаясь с помощью некоего двигателя, которым снабдили его сущности из балка, тессеракт, в Кип-версий, может быстро перевезти Купера с одного края нашей Вселенной на другой (на Землю) через балк.
На рис. 29.4 показан один из моментов этого путешествия. Одно пространственное измерение на рисунке опущено, и тессеракт здесь — трехмерный куб в трехмерном балке, а Купер — двумерный силуэт на двумерной грани куба, двигающегося параллельно нашей двумерной Вселенной (бране).
Чтобы это соответствовало показанному на экране, я считаю путешествие очень быстрым, длительностью всего в несколько минут, в течение которых ошарашенный Купер все еще падает в тессеракте. Когда он, наконец, попадает в большой зал, тессеракт пристыковывается около спальни Мёрф.
Рис. 29.4. Купер путешествует через балк, над нашей браной, в одной из граней тессеракта. Одно пространственное измерение опущеноСтыковка со спальней Мёрф
Как происходит стыковка? В моей интерпретации тессеракт, остановившись в балке около Земли, должен пройти через трехсантиметровый AdS-слой, в котором заключена наша брана (см. главу 23), чтобы приблизиться к спальне Мёрф. Вероятно, сущности из балка, которые построили тессеракт, снабдили его каким-то устройством для раздвигания AdS-слоя, чтобы расчистить путь к нашей бра не.
На рис. 29.5 показан тессеракт, который уже прошел через AdS-слой и пристыковался возле спальни Мёрф в доме Купера
Как и прежде, здесь опущено одно пространственное измерение, поэтому тессеракт изображен как трехмерный куб, а дом и спальня Мёрф, равно как и Купер, — двумерные.
Дальняя грань тессеракта совмещена со спальней Мёрф. Поясню подробнее. Дальняя грань — это трехмерное сечение тессеракта, которое находится в спальне Мёрф в том же смысле, в каком сфера на рис. 22.2 находится в двумерной бране, а сферическое сечение гиперсферы на рис. 22.3 находится в трехмерной бране. То есть все, что есть в спальне Мёрф, включая — ее саму, тоже находится внутри дальней грани.
Когда идущий от Мёрф луч света достигает границы между спальней и тессерактом, он может пойти дальше двумя путями. Либо остаться в нашей бране, пойдя по пути 1 (рис. 29.5) — в стену или наружу в открытую дверь. Либо оказаться в тессеракте, пойдя по пути 2, к следующей грани тессеракта, а через нее — в глаза Купера. Некоторые фотоны луча отправятся по пути 1, остальные — по пути 2, формируя для Купера изображение Мёрф.
- Черные дыры и складки времени. Дерзкое наследие Эйнштейна - Торн Кип - Науки о космосе
- Путешествие к далеким мирам - Карл Гильзин - Науки о космосе
- Погибшие в космосе - Александр Болонкин - Науки о космосе
- Гайд по астрономии. Путешествие к границам безграничного космоса - Уоллер Уильям - Науки о космосе
- Парадоксы ракеты. Еще о парадоксах ракеты - Ари Абрамович Штернфельд - Науки о космосе / Физика