прекращается, а температуры тел уравниваются?
Вопрос этот очень важен и интересен. Кроме того, он труден, но мы подготовлены к ответу на него. Дело заключается в том, что равновесное состояние является наиболее вероятным.
Нам придется потратить одну-две странички на объяснение этой мысли. Прежде всего о самом слове «состояние». Оно употребляется в физике в двух смыслах. А чтобы между ними не путаться, введем два термина, которые несколько некрасивые и громоздкие, но, что поделаешь, зато научные и общепринятые. Итак, надо различать макросостояния тел и их микросостояния.
Термин «макросостояние» совпадает с житейским словом. Помните обычный утренний обмен фразами доктора и сестры в больнице?
— Каково состояние больного? — спрашивает врач.
— Без изменения, — отвечает сиделка, — температура та же, давление и пульс те же самые.
Макросостояние газа, жидкости или твердого тела характеризуется также в первую очередь температурой и давлением. Но, разумеется, теперь речь идет не о давлении крови, а о давлении, которое на тело оказывает окружение. Давление и температура — основные показатели, говорят — параметры, состояния. Если давление и температура не меняются, то с телом ничего не происходит, все свойства его сохраняются.
Другой подход необходим, если речь идет не о газе в баллоне, не о жидкости в сосуде и не о куске твердого тела, а о механической системе: машине, состоящей из множества рычагов и шестеренок, теперь макросостояние будет описано, если указать взаимное расположение частей механизма, а также скорости, с которыми эти части движутся.
Приходится, как видим, и в макросостояниях различать два вида состояний — термодинамическое и механическое. И описываются они разными параметрами.
До того как молекулы вышли на сцену, эти два варианта описания казались совершенно не связанными. Относились они к разным случаям — одно к покоящейся жидкости или газу, другое к механическим устройствам — и ничего общего друг с другом не имели. Параметры, употребительные в термодинамике, — это давление и температура, механические параметры — это координаты и скорости. И одно к другому никогда не сводилось.
Перевод термодинамики на молекулярный язык сразу же выявил наличие мостика между этими двумя описаниями. С точки зрения молекулярной гипотезы всякое тело есть система взаимодействующих молекул, то есть не что иное, как механическая система, нечто вроде рычагов и шестеренок. А состояние такой системы задается, как мы только что видели, взаимным расположением и скоростями ее частей — в нашем случае молекул. Что же, оказывается, дело обстоит не так уж сложно? Термодинамическое макросостояние есть не что иное, как механическое состояние системы молекул?
Осторожнее, повременим с таким заключением. Если немного подумать, то станет ясно, что дело обстоит не так уж просто.
В термостате стоит стакан с жидкостью. Ее температура и давление неизменны. Термодинамическое состояние ее в каждое мгновение одно и то же. Кажется, она — само постоянство и покой. Но ведь молекулы этой жидкости совершают свой вечный тепловой танец! Значит, механические состояния молекул, которые образуют эту самую жидкость, меняются каждое мгновение! Значит, постоянство и покой обманчивы и жидкость живет бурной жизнью?!
Раз уж механическое состояние системы молекул, составляющих жидкость, не отражает ее «макроскопического спокойствия», то назовем его иначе: термин — «микросостояние» будет подходящим по смыслу дела. Теперь мы скажем: каждое состояние (макросостояние) осуществляется беспрерывной сменой огромного числа микросостояний.
Представьте себе, что система состоит из трех перенумерованных молекул. Микросостояние системы будем описывать донельзя грубо, а именно поделим сосуд, в котором носятся эти три молекулы, на три отсека, а что касается скорости, то разобьем их на две группы — до 1 км/сек (малая скорость) и больше 1 км/сек. Каково будет число микросостояний в этом смехотворно простом случае? Считайте, 8 вариантов распределения скоростей и 27 вариантов положений, то есть 27 × 8! = 216 микросостояний для модели газа, упрощенной до смешного! Нетрудно понять, что в реальных случаях, когда для характеристики системы требуется задать точно месторасположение и скорости миллиарда миллиардов молекул, числа микросостояний, относящиеся к одному макросостоянию, становятся непредставимо большими.
В маленьком газовом баллончике модной зажигалки носятся молекулы газа, который зовется пропаном. Каждое мгновение расположение молекул и их скорости меняются, каждое мгновение — другое микросостояние.
Но хотя число микросостояний огромно, оно все же не бесконечно велико. Физики могут сосчитать число микросостояний в баллончике зажигалки. Так как мне неизвестны технические параметры этой зажигалки, то я могу сообщить лишь порядок интересующей нас величины. Число микросостояний в баллончике записывается 1017 цифрами! Число печатных знаков в книжке, которую вы читаете, меньше миллиона (106). Значит, чтобы записать интересующее нас число микросостояний, потребовалась бы книга в сто миллиардов раз (1011) более толстая, чем эта.
Надеюсь, что мне удалось поразить ваше воображение, но моя задача не в этом. Цель этого самого трудного параграфа — показать фундаментальную роль теории вероятностей в учении о равновесии тел. К этой цели мы приблизились вплотную, но, чтобы вы отдохнули, мне хочется разрешить себе немного пофилософствовать на тему о трудности популярного изложения научных истин.
В какой бы форме нам ни преподносилось научнопопулярное сочинение, оно всегда будет представлять собой рассказ о научных фактах и идеях.
Разговор может идти в двух тональностях. Первая возникает тогда, когда автор ставит перед собой задачу дать ответ на вопросы «как?»; вторая — в тех случаях, когда предстоит ответить на вопросы «почему?».
Различие между этими двумя вариантами изложения научных истин велико. В первом — задача литератора состоит в том, чтобы вести неторопливый рассказ, не забыть важные детали, заботиться об образности изложения, прибегать к повторениям, заставляя этим читателя держать перед глазами всю картину события. Нет проблемы такой степени сложности, чтобы ее нельзя было осветить ответами на вопросы «как сделано?», «как построено?», «как работает?»… на любом уровне подготовки читателя.
Во втором случае задача совсем другая. Дать ответ на вопрос «почему?» — значит показать, что некое событие или идея вытекают из других положений более общего характера. Но показать, что частное следует из общего, можно лишь методами логики, а еще лучше — методами математики.
Задача литератора, вступившего на тяжелый путь ответов на вопросы «почему?», неизмеримо сложнее трудностей, с которыми сталкивается автор, описывающий ледники Кавказских гор или устройство моторного катера с новыми обводами. Ему надо тщательно выделить аксиомы, лежащие в основе объяснения, уменьшить для облегчения восприятия высоту логических ступеней, ведущих от основания к вершине объяснения.
Чтобы объяснение «дошло», читатель должен держать в памяти одновременно все логические переходы, и каждый из них должен быть настолько ясным, чтобы казаться само собой разумеющимся.
Поэтому-то тяжело приходится и автору и