Шрифт:
Интервал:
Закладка:
неона E2 и E3. Уровни обладают сложной структурой, т. е. состоят из множества подуровней. В результате гелий-неоновый лазер может работать на 30 длинах волн в области видимого света и инфракрасного излучения. Зеркала оптического резонатора имеют многослойные диэлектрические покрытия. Это позволяет создать необходимый коэффициент отражения для заданной длины волны и возбудить тем самым в Г. л. генерацию на требуемой частоте.
Основной конструктивный элемент гелий-неонового лазера — газоразрядная трубка (обычно из кварца). Давление газа в разряде 1 мм рт. ст., причём количество Не обычно в 10 раз больше, чем Ne. На рис. 2 приведена конструкция гелий-неонового лазера, разработанная для применения в открытом космосе. Разрядная трубка с внутренним диаметром 1,5 мм из корундовой керамики помещена между полупрозрачным зеркалом и отражающей призмой, смонтированными на жёсткой бериллиевой трубе (цилиндре). Разряд осуществляется на постоянном токе (8 ма, 1000 в) в двух секциях (каждая длиной 127 мм ) с общим центральным катодом. Холодный оксиднотанталовый катод (диаметром 48 мм и длиной 51 мм ) разделён на 2 половины диэлектрической прокладкой, обеспечивающей более однородное распределение тока по поверхности катода. Вакуумные сильфоны из нержавеющей стали, являющиеся анодами, образуют подвижное соединение каждой трубки с держателями зеркала и призмы. Кожух завершен с левого конца выходным окном. Лазер рассчитан на работу в космосе в течение 10 000 ч.
Мощность излучения гелий-неоновых лазеров может достигать десятых долей вт, кпд не превышает 0,01%, но высокая монохроматичность и направленность излучения, простота в обращении и надёжность конструкции обусловили их широкое применение. Красный гелий-неоновый лазер (l = 0,6328 мкм ) используется при юстировочных и нивелировочных работах (шахтные работы, кораблестроение, строительство больших сооружений). Гелий-неоновый лазер широко применяется в оптической связи и локации, в голографии и в квантовых гироскопах .
Лазер на углекислом газе (К. Пател, США, Ф. Легей, Н. Легей-Соммер, Франция, 1964). Молекулы, в отличие от атомов, имеют не только электронные, но и т. н. колебательные уровни энергии, обусловленные колебаниями атомов, составляющих молекулу, относительно положений равновесия (см. Молекула ). Переходы между колебательными уровнями энергии соответствуют инфракрасному излучению. Лазеры, в которых используются эти переходы, называются молекулярными. Из числа молекулярных лазеров особенно интересен лазер, в котором используются колебательные уровни молекулы СО2 , между которыми создаётся инверсия населённостей (СО2 -лазер).
В газоразрядных CO2 -лазерах инверсия населённостей также достигается возбуждением молекул электронным ударом и резонансной передачей возбуждения. Для передачи энергии возбуждения служат молекулы азота N2 , возбуждаемые, в свою очередь, электронным ударом. Обычно в условиях тлеющего разряда около 90% молекул азота переходит в возбуждённое состояние, время жизни которого очень велико. Молекулярный азот хорошо аккумулирует энергию возбуждения и легко передаёт её молекулам CO2 в процессе неупругих соударений. Высокая инверсия населённостей достигается при добавлении в разрядную смесь Не, который, во-первых, облегчает условия возникновения разряда и, во-вторых, в силу своей высокой теплопроводности охлаждает разряд и способствует опустошению нижних лазерных уровней молекулы CO2 . Эффективное возбуждение СО2 -лазеров может быть достигнуто химическими или газодинамическими методами.
Тонкая структура колебательных уровней молекулы C02 позволяет изменять длину волны (перестраивать лазер) скачками через 30—50 Ггц в интервале длин волн от 9,4 до 10,6 мкм.
СО2 -лазеры обладают высокой мощностью (наибольшая мощность лазерного излучения в непрерывном режиме) и высоким кпд. При возбуждении молекул CO2 электронным ударом и длине газоразрядной трубы 200 м СО2 -лазер излучает мощность 9 квт. Существуют компактные конструкции с выходной мощностью в 1 квт. Кроме высокой выходной мощности, СО2 -лазеры обладают большим кпд, достигающим 15—20% (возможно достижение кпд 40%). СО2 -лазеры могут принципиально эффективно работать и в импульсном режиме. Перечисленные особенности CO2 -лазеров обусловливают многообразие их применения: технологические процессы (резание, сварка), локация и связь (атмосфера прозрачна для волн с l = 10 мкм ), физические исследования, связанные с получением и изучением высокотемпературной плазмы (высокая мощность излучения), исследование материалов и т. д.
Газоразрядные трубки СО2 -лазеров имеют диаметр от 2 до 10 см, длина их может быть очень большой (рис. 3 ). Обычно применяются секционные (модульные) конструкции с током разряда до нескольких а при напряжениях до 10 кв на секцию. Т. к. мощность СО2 -лазеров непрерывного действия достигает очень высоких значений, серьёзной проблемой является изготовление достаточно долговечных зеркал хорошего оптического качества. Применяются покрытые золотом сапфировые или металлические зеркала. Вывод излучения зачастую производится через отверстия в зеркалах. В качестве полупрозрачных выходных зеркал применяются пластины из высокоомного германия, арсенида галлия и т. п.
В электрическом разряде СО2 -лазеров имеют место нежелательные эффекты, разрушающие инверсию населённостей, — разогрев газа и диссоциация его молекул. Для их устранения газовая смесь непрерывно «прогоняется» через разрядные трубы лазеров. Так происходит обновление активной среды. Для получения больших мощностей (несколько квт ) в непрерывном режиме газ прогоняют через трубку с большой скоростью и разряд происходит в сверхзвуковом потоке. Для того чтобы избежать потерь дорогостоящего Не, газовая смесь циркулирует по замкнутому контуру. Возбуждение электронным ударом производится либо в резонаторе, либо непосредственно перед поступлением смеси в резонатор. В лучших приборах практически все молекулы CO2 , влетающие в резонатор, уже возбуждены и за время пролёта через резонатор отдают энергию возбуждения в виде кванта излучения.
Ионные лазеры (У. Бриджес, США, 1964). В ионных лазерах инверсия населённостей создаётся между электронными уровнями энергии ионизированных атомов инертных газов и паров металлов. Инверсия населённостей достигается выбором пары уровней, для которой нижний лазерный уровень обладает меньшим, а верхний — большим временами жизни. Необходимость создания большого количества ионов приводит к тому, что плотность тока газового разряда в ионных лазерах достигает десятков тысяч а/см2 Электрический разряд осуществляется в тонких капиллярах диаметром до 5 мм. При больших плотностях тока газ увлекается током от анода к катоду. Для компенсации этого эффекта анодная и катодная области разрядной трубки соединяются дополнительной длинной трубкой малого диаметра, обеспечивающей обратное движение газа.
Ввиду высокой плотности тока для изготовления газоразрядных трубок ионных лазеров применяются металлокерамические конструкции или трубки из бериллиевой керамики, обладающие высокой теплопроводностью. Кпд ионных лазеров не превышает 0,01%. В области видимого света сравнительно высокой мощностью в непрерывном режиме обладают аргоновые лазеры. Аргоновый ионный лазер генерирует излучение с l = 0,5145 мкм (зелёный луч) мощностью до нескольких десятков вт. Он применяется в технологии обработки твёрдых материалов, при физических исследованиях, в оптических линиях связи, при оптической локации искусственных спутников Земли.
Ионный лазер на смеси ионов аргона и криптона обладает способностью перестраиваться по длине волны (сменой зеркал) во всём видимом диапазоне. Он излучает мощность до 0,1 вт на волнах 0,4880 мкм (синий), 0,5145 мкм (зелёный), 0,5682 мкм (жёлтый) и 0,6471 мкм (красный луч).
Весьма перспективен лазер на парах кадмия, работающий в непрерывном режиме в синей (0,4416 мкм ) и ультрафиолетовой (0,3250 мкм ) областях спектра и обладающий высокой монохроматичностью. Пары Cd образуются в испарителе, расположенном около анода (рис. 4 ). Они сильно разбавлены Не. Равномерное распределение Cd в газоразрядной трубке и подбор его концентрации достигаются увлечением паров Cd ионами Не от анода к катоду. Плотность паров Cd определяется температурой подогревателя. В охладителе около катода Cd конденсируется. Трубка диаметром 2,5 мм и длиной 140 см при давлении Не 4,5 мм рт. ст., температуре подогревателя 250 °С, токе разряда 0,12 а и напряжении 4 кв позволяет получить мощность 0,1 вт в синей и 0,004 вт в ультрафиолетовой областях спектра. Кадмиевый лазер применяется в оптических исследованиях (см. Нелинейная оптика ), океанографии, а также фотобиологии и фотохимии.
- Большая Советская Энциклопедия (ЛЮ) - БСЭ БСЭ - Энциклопедии
- Большая Советская Энциклопедия (ОС) - БСЭ БСЭ - Энциклопедии
- Большая Советская Энциклопедия (ОТ) - БСЭ БСЭ - Энциклопедии
- Большая Советская Энциклопедия (ВТ) - БСЭ БСЭ - Энциклопедии
- Большая Советская Энциклопедия (ФТ) - БСЭ БСЭ - Энциклопедии