Шрифт:
Интервал:
Закладка:
Это разделение прилагательных на две группы кажется ясным и не вызывает возражений. Оно может быть распространено и на существительные: «слово» является словом, «существительное» — существительным, но «часы» — это не часы и «глагол» — не глагол.
Парадокс возникает, как только задается вопрос: к какой из двух групп относится само прилагательное «гетерологическое»? Если оно аутологическое, оно обладает обозначаемым им свойством и должно быть гетеро-логическим. Если же оно гетерологическое, оно не имеет называемого им свойства и должно быть поэтому аутологическим. Налицо парадокс.
По аналогии с этим парадоксом легко сформулировать другие парадоксы такой же структуры. Например, является или не является самоубийцей тот, кто убивает каждого несамоубийцу и не убивает ни одного самоубийцу?
Оказалось, что парадокс Греллинга был известен еще в средние века как антиномия выражения, не называющего самого себя. Можно представить себе отношение к софизмам и парадоксам в новое время, если проблема, требовавшая перед этим ответа и вызывавшая оживленные споры, оказалась вдруг забытой и была переоткрыта только пятьсот лет спустя!
Еще одна, внешне простая антиномия была указана в самом начале нашего века Д. Берри.
Множество натуральных чисел бесконечно. Множество же тех имен этих чисел, которые имеются, например, в русском языке и содержат меньше чем, допустим, сто слов, является конечным. Это означает, что существуют такие натуральные числа, для которых в русском языке нет имен, состоящих менее чем из ста слов. Среди этих чисел есть, очевидно, наименьшее число. Его нельзя назвать посредством русского выражения, содержащего менее ста слов. Но выражение: «Наименьшее натуральное число, для которого не существует в русском языке его сложное имя, слагающееся менее чем из ста слов», является как раз именем этого числа! Это имя только что сформулировано в русском языке и содержит только девятнадцать слов. Очевидный парадокс: названным оказалось то число, для которого нет имени!
ДВА-ТРИ ПРИМЕРА
Хорошо известно описание Н. Гоголем игры Чичикова с Ноздревым в шашки. Их партия так и не закончилась. Чичиков заметил, что Ноздрев мошенничает, и отказался играть, опасаясь проигрыша. Недавно один специалист по шашкам восстановил по репликам игравших ход этой партии и показал, что позиция Чичикова не была еще безнадежной.
Допустим, что Чичиков все-таки продолжил игру и в конце концов выиграл партию, несмотря на плутовство партнера. По уговору проигравший Ноздрев должен отдать Чичикову пятьдесят рублей и «какого-нибудь щенка средней руки или золотую печатку к часам». Но Ноздрев скорее всего отказывается платить, упирая на то, что он сам всю игру мошенничал, а игра не по правилам — это как бы и не игра. Чичиков может возразить, что разговор о мошенничестве здесь ни к месту: мошенничал сам проигравший, значит, он тем более должен платить.
В самом деле, должен был бы платить Ноздрев в подобной ситуации или нет? С одной стороны, да, поскольку он проиграл. Но с другой — нет, так как игра велась не по правилам, а это вовсе и не игра. Значит, ни выигравшего, ни проигравшего в такой «игре» не может быть. Если бы мошенничал сам Чичиков, Ноздрев, конечно, не обязан был бы платить. Но, однако, мошенничал как раз проигравший Ноздрев…
Здесь ощущается что-то парадоксальное: «с одной стороны…», «с другой стороны…» и «с обеих сторон» в равной мере убедительно, хотя эти стороны несовместимы. Должен все-таки Ноздрев платить или нет?
Есть смысл оставить решение этого вопроса читателю.
У каждого из нас имеются определенные интуитивные представления о логике, выработаны некоторые устоявшиеся навыки последовательного и доказательного рассуждения. Полезно было бы сейчас, опираясь на них, попытаться решить, действительно здесь парадокс или нет. Такое самостоятельное размышление позволит в какой-то мере прочувствовать, насколько неопределенной и даже ненадежной является наша интуитивная логика и насколько сложно бывает отделить простое затруднение от подлинного парадокса. Вот еще один пример для размышления.
Ранее шла речь о смысле бессмысленного. Выяснилось как будто, что смысл бессмысленного в том, что оно не имеет смысла. Не является ли это положение парадоксальным?
Говорилось также о попытках уклониться от парадокса «лжеца», ограничивая круг объектов, о которых можно высказаться. Не является ли парадоксом само утверждение: «Ни одно высказывание не должно говорить о самом себе»? Ведь оно касается всех высказываний и, значит, говорит что-то и о самом себе.
Эти примеры для размышления не настолько сложны, чтобы читатель не справился с ними самостоятельно.
ЧТО ТАКОЕ ЛОГИЧЕСКИЙ ПАРАДОКС?
Никакого исчерпывающего перечня логических парадоксов не существует, да он и невозможен.
Рассмотренные парадоксы — это только часть из всех обнаруженных к настоящему времени. Вполне вероятно, что в будущем будут открыты и многие другие и даже совершенно новые их типы. Само понятие парадокса не является настолько определенным, чтобы удалось составить список хотя бы уже известных парадоксов.
«Теоретико-множественные парадоксы являются очень серьезной проблемой, не для математики, однако, а скорее для логики и теории познания», — пишет австрийский математик и логик К. Гёдель. «Логика непротиворечива. Не существует никаких логических парадоксов, — утверждает советский математик Д. Бочвар. — Такого рода расхождения иногда существенны, иногда словесны. Дело во многом в том, что именно понимается под «логическим парадоксом».
Необходимым признаком логических парадоксов считается логический словарь. Парадоксы, относимые к логическим, должны быть сформулированы в логических терминах. Однако в логике нет четких критериев деления терминов на логические и внелогические. Логика, занимающаяся правильностью рассуждений, стремится свести понятия, от которых зависит правильность практически применяемых выводов, к минимуму. Но этот минимум не предопределен однозначно. Кроме того, в логических терминах можно сформулировать и внелогические утверждения. Использует ли конкретный парадокс только чисто логические посылки, далеко не всегда удается определить однозначно.
Логические парадоксы не отделяются жестко от всех иных парадоксов, подобно тому как последние не отграничиваются ясно от всего непарадоксального и согласующегося с господствующими представлениями.
На первых порах изучения логических парадоксов казалось, что их можно выделить по нарушению некоторого, еще не исследованного положения или правила логики. Особенно активно претендовал на роль такого правила введенный Б. Расселом «принцип порочного круга». Этот принцип утверждает, что совокупность объектов не может содержать членов, определимых только посредством этой же совокупности.
Все парадоксы имеют одно общее свойство — самоприменимость, или циркулярность. В каждом из них объект, о котором идет речь, характеризуется посредством некоторой совокупности объектов, к которой он сам принадлежит. Если мы выделяем, например, человека как самого хитрого в классе, мы делаем это при помощи совокупности людей, к которой относится и данный человек (при помощи «его класса»). И если мы говорим: «Это высказывание ложно», мы характеризуем интересующее нас высказывание путем ссылки на включающую его совокупность всех ложных высказываний.
Во всех парадоксах имеет место самоприменимость, а значит, есть как бы движение по кругу, приводящее в конце концов к исходному пункту. Стремясь охарактеризовать интересующий нас объект, мы обращаемся к той совокупности объектов, которая включает его. Однако оказывается, что сама она для своей определенности нуждается в рассматриваемом объекте и не может быть ясным образом понята без него. В этом круге, возможно, и кроется источник парадоксов.
Ситуация осложняется, однако, тем, что такой круг имеется также во многих совершенно непарадоксальных рассуждениях. Циркулярным является огромное множество самых обычных, безвредных и вместе с тем удобных способов выражения. Такие примеры, как «самый большой из всех городов», «наименьшее из всех натуральных чисел», «один из электронов атома железа» и т. п., показывают, что далеко не всякий случай самоприменимости ведет к противоречию и что она важна не только в обычном языке, но и в языке науки.
Простая ссылка на использование самоприменимых понятий недостаточна, таким образом, для дискредитации парадоксов. Необходим еще какой-то дополнительный критерий, отделяющий самоприменимость, ведущую к парадоксу, от всех иных ее случаев.
Было много предложений на этот счет, но удачного уточнения циркулярности так и не было найдено. Невозможным оказалось охарактеризовать циркулярность таким образом, чтобы каждое циркулярное рассуждение вело к парадоксу, а каждый парадокс был итогом некоторого циркулярного рассуждения.
- Эврика-86 - А. Лельевр - Прочая научная литература
- Логика. Элементарный курс. Учебное пособие - Александр Ивин - Прочая научная литература
- Моделирование рассуждений. Опыт анализа мыслительных актов - Дмитрий Поспелов - Прочая научная литература
- Научная журналистика как составная часть знаний и умений любого ученого. Учебник по научно-популярной журналистике - Карл Левитин - Прочая научная литература
- Два пола. Зачем и почему? Эволюционная роль разделения на два пола с точки зрения кибернетики - Виген Геодакян - Прочая научная литература