Читать интересную книгу Лестница жизни: десять величайших изобретений эволюции - Ник Лэйн

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 38 39 40 41 42 43 44 45 46 ... 113
в его геноме и, наконец, “умерли”, застолбив себе место. Но почему эти гены так разошлись в древнейших эукариотических клетках? Одно из возможных объяснений таково. Бактериальные “прыгающие” гены уже скакали по хромосомам клетки-хозяина, археи, которая, видимо, ничего не смогла с ними поделать. Другое объяснение гласит, что первоначальная популяция химерных клеток оказалась слишком мала, чтобы ей помог очищающий отбор, успешно устраняющий дефекты в крупных бактериальных популяциях.

Как бы то ни было, перед древнейшими эукариотами стояла особая проблема. Они были заражены интронами, которые должны были часто портить белки, потому что РНК-“ножницы” не могли вырезать их достаточно быстро. Хотя такое положение дел не обязательно приводило к гибели клетки (испорченные молекулы белков постепенно расщеплялись, а “ножницы”, как ни медленно они работали, рано или поздно все-таки делали свое дело, перекраивая матричную РНК так, что на ее основе начинали синтезироваться функциональные белки), в таких клетках, должно быть, царила ужасная неразбериха. Но за решением этой проблемы несчастным клеткам не пришлось далеко ходить. По мнению Мартина и Кунина, самый простой способ восстановить порядок и вернуться к постоянному синтезу функциональных белков состоял в том, чтобы дать “ножницам” достаточно времени на устранение лишнего и после этого позволять рибосомам начинать синтез белков. Иными словами, требовалось сделать так, чтобы матричные РНК, содержащие интроны, вначале шли под “ножницы” и лишь затем передавались рибосомам. Такого разделения двух процессов во времени можно добиться просто за счет разделения их в пространстве, удалив рибосомы из окрестностей ДНК. Но как? С помощью мембраны с большими дырками! Для этого достаточно было взять имевшуюся мембрану, поместить в нее гены и проследить, чтобы в ней было достаточно пор для пропускания матричных РНК к рибосомам. Таким образом, определяющая особенность всех эукариот — наличие ядра — появилась, по Мартину и Кунину, вовсе не для защиты генов, а для изоляции их от расположенных в цитоплазме фабрик белкового синтеза.

Это решение может показаться слишком уж незамысловатым (хотя для успешной эволюции это только к лучшему), однако оно сразу дало изобретательным клеткам целый ряд преимуществ. Когда “прыгающие” гены перестали представлять опасность, получившиеся из них интроны оказались даже благом. Один из их плюсов состоял в том, что они позволили по-новому перекраивать гены, обеспечивая клетки целым калейдоскопом белков, чем эукариоты не преминули воспользоваться, и теперь одну из важнейших особенностей работы их генов составляют альтернативные способы вырезания интронов. Если ген содержит несколько кодирующих участков, из него можно по-разному вырезать интроны, получая из одного гена целый набор родственных белков. В человеческом геноме лишь около двадцати пяти тысяч генов, но их кусочки перетасовываются так, что позволяют синтезировать не менее шестидесяти тысяч разных белков, а это уже немало. Если бактерии — неисправимые консерваторы, то эукариоты, благодаря интронам, стали неутомимыми экспериментаторами.

Еще один плюс в том, что “прыгающие” гены позволили эукариотам существенно увеличить свои геномы. Научившись жить фагоцитозом, первые эукариоты избавились от бактериальной рутины, особенно от постоянной подгонки под нужды быстрого размножения. Эукариотам незачем было конкурировать с бактериями: они могли просто пожирать их и постепенно, на досуге, переваривать. Им больше некуда было спешить, и они могли позволить себе накапливать ДНК и гены, открывшие им широкие возможности для колоссального усложнения. “Прыгающие” гены помогли им обзавестись геномами, в тысячи раз превышающими по размеру геномы бактерий. Хотя значительная часть приобретенной при этом ДНК была не более чем мусором, кое-что из таких приобретений пригодилось для изготовления новых генов и регуляторных последовательностей. Возрастание сложности стало чуть ли не побочным эффектом этих изменений.

Вот и вся неизбежность сложной жизни на Земле и появления человеческого сознания. Мир живой природы разделен надвое: на вечно неизменных прокариот и вечно меняющихся эукариот. Переход от первых ко вторым, судя по всему, свершился не путем эволюции, медленного восхождения к вершинам сложности, на которые взбирались несметные полчища прокариот, постепенно исследуя весь спектр возможностей. Эти полчища действительно исследовали все доступные им пути, но при этом так и остались бактериями, неспособными увеличиваться в размерах, одновременно увеличивая выработку энергии. Лишь невероятная случайность позволила разорвать этот порочный круг: она породила сотрудничество двух видов прокариот, клеткам одного из которых удалось проникнуть в клетку другого. Перед новой химерной клеткой сразу встал целый ряд проблем, но, по счастью, она сразу же обрела и небывалую свободу, получив возможность увеличиваться в размерах, не расплачиваясь за это дорогой энергетической ценой, а это означало способность сделаться фагоцитом и вырваться из сомкнутых рядов бактерий. Столкнувшись с нашествием эгоистичных генов, древнейшие эукариоты сумели справиться с ними, попутно приобретя не только клеточное ядро, но и склонность накапливать участки ДНК и перекладывать их, порождая бесчисленные вариации, наполнившие волшебный мир, в котором мы живем. И это тоже была случайность. Всеми чудесами нашего мира мы, похоже, обязаны двум великим случайностям. Наша судьба дважды висела на волоске. И нам очень повезло, что мы вообще существуем.

Глава 5

Секс

Ирландский драматург Джордж Бернард Шоу просто притягивал к себе истории. Рассказывают, например, что на одном из приемов Шоу стала оказывать знаки внимания некая красавица-актриса[35]. “Нам с вами стоило бы завести ребенка, — заявила она, — он унаследовал бы мою красоту и ваш ум”. На это Шоу возразил: “Но что если он унаследовал бы мою красоту и ваш ум?”

Опасение Шоу было вполне резонным. Половое размножение — удивительный механизм, генерирующий случайные сочетания успешных генов. Может быть, лишь возможности полового процесса как генератора случайных комбинаций и могут привести к появлению такого человека, как Шоу, или такого, как та красавица-актриса. Но стоит половому процессу выстроить удачную комбинацию генов, как он тут же рассыпает ее. Создатели печально известной, хотя в основном безвредной организации, прозванной “Нобелевским банком спермы”, упустили из виду именно это. Когда биохимику Джорджу Уолду предложили сдать свою заслуженную сперму в этот банк, он отказался, отметив, что просителям была бы нужна скорее не его сперма, а сперма таких людей, как его отец, бедный портной-иммигрант, чьи чресла, как ни странно, оказались источником гениальности. “А что дала миру моя сперма? — сокрушался нобелевский лауреат. — Двоих гитаристов!” Гениальность и в целом интеллектуальный потенциал действительно наследуются (точнее, на их развитие гены оказывают влияние, хотя и не строго его определяют), но половое размножение делает из наследования непредсказуемую лотерею.

Многие из нас согласятся, что главное волшебство секса (то есть полового размножения) состоит как раз в его способности генерировать изменчивость, всякий раз извлекая из небытия уникальных существ,

1 ... 38 39 40 41 42 43 44 45 46 ... 113
На этом сайте Вы можете читать книги онлайн бесплатно русская версия Лестница жизни: десять величайших изобретений эволюции - Ник Лэйн.
Книги, аналогичгные Лестница жизни: десять величайших изобретений эволюции - Ник Лэйн

Оставить комментарий