Шрифт:
Интервал:
Закладка:
Активное групповое слежение за состоянием вторичных напряжений в источнике питания производится сравнением выходного напряжения канала +5 В с уровнем опорного напряжения, формируемого внутренним узлом микросхемы IC1. Если во вторичных цепях возникает большой разбаланс нагрузки, то напряжение в канале +12 В может сильно отличаться от номинальной величины. В качестве защитной меры от повышения напряжения в этой цепи к эмиттеру Q1 подключен датчик напряжения канала +12 В на стабилитроне D1. Когда значение выходного напряжения в этом канале превышает напряжение стабилизации стабилитрона D1, происходит пробой последнего, и отрицательное напряжение на эмиттере Q1 начинает компенсироваться положительным потенциалом, поступающим через D1. Снижение отрицательного напряжения в этой точке приведет к запиранию транзистора Q1 и возрастанию положительного уровня на R16. Дальнейшее воздействие на IC1/4 остановит ШИМ преобразователь.
В начальный момент подачи электропитания на микросхему IC1 на всех вторичных каналах напряжения отсутствуют. Поэтому транзистор Q1 не может находиться в активном состоянии и принимать участие в запуске схемы преобразователя. В это время на IC1/14 появляется опорное напряжение, которое через делитель из R6 и R16 поступит на IC1/4 и блокирует работу микросхемы. Для обеспечения нормального запуска IC1 применяется ключевой каскад на Q2, который начинает работать сразу после появления напряжения питания на выводе IC1/12. В базовую цепь Q2 включены резисторы R4 и R5. Резистор R4 через конденсатор C5 соединен с цепью питания микросхемы IC1/12. Когда происходит формирование начального импульса питания ШИМ преобразователя, положительное напряжение через разряженный конденсатор C5 поступает на резистор R4 и через него попадает на базу транзистора Q2. Возникшим импульсом транзистор открывается, и напряжение на коллекторе Q2 резко понижается до нулевого уровня. По мере заряда конденсатора C5 на его отрицательной обкладке происходит экспоненциальный спад положительного напряжения. Снижение положительного напряжения вызывает постепенное закрывание транзистора Q2. Постоянная времени разряда конденсатора определяется номиналами элементов C5 и R4 и параллельного соединения открытого перехода база-эмиттер транзистора Q2 и резистора R5. Параметры пассивных элементов должны выбираться таким образом, чтобы закрывание транзистора происходило после появления отрицательных напряжений вторичных каналов на резисторе R2 и диоде D2. Если это условие соблюдается, то после закрывания транзистора Q2 напряжение на аноде D4 не примет положительного значения и сбоя в работе источника питания не произойдет.
Диод D4 выполняет функции развязывающего элемента, отделяющего элементы схемы «медленного» запуска от узла защиты и схемы на Q2. Присутствие этого диода является необходимым условием плавного запуска ШИМ преобразователя, так как его наличие исключает шунтирование положительного потенциала на отрицательной обкладке конденсатора C6 открытым транзистором Q2. После завершения процедуры «медленного» запуска, если нагрузочные цепи в порядке, управление напряжением на выводе IC1/4 сначала переходит к транзистору Q2, а затем к Q1.
Основное назначение схем защиты источника питания – исключение повреждений компонентов самого преобразователя при возникновении во вторичной цепи неконтролируемого увеличения нагрузки выше уровня, оговоренного условиями технической эксплуатации. Существует различный подход как к организации защиты, так и к применению электронных элементов. Как правило, в схемотехнике узлов защиты производится разделение каскадов, отвечающих за контроль работы основных вторичных каналов и маломощных цепей. Во внутренней структуре микросхемы TL494 введено несколько функциональных узлов, через которые можно оказывать воздействие на основной тракт формирования ШИМ последовательностей от принудительного ограничения длительности выходных импульсов до полной блокировки схемы. В зависимости от организации схемы защиты влияние на работу основной схемы может быть оказано через один или несколько таких узлов. Каждая схема преобразователя содержит элементы защиты, но выполнены они по-разному. На приведенных ниже схемах защиты показаны разные варианты практической реализации данного узла.
На рис. 3.15 представлен один из вариантов системы комплексной защиты импульсного преобразователя напряжения.Рис. 3.15. Схема комплексной защиты от перегрузки (вариант 1)
На рис. 3.15 приведены основные элементы узла защиты. Нумерация элементов относится только к компонентам этого рисунка. На схеме показаны первичная цепь каскада промежуточного усилителя с согласующим трансформатором T, упрощенная схема включения микросхемы TL494. Узел защиты представлен полнофункциональной схемой.
Узел защиты выполняет следующие основные функции:
• контроль длительности импульсов управления силовым каскадом;
• блокировка работы узла ШИМ преобразователя в случае возникновения КЗ в каналах с отрицательными номиналами напряжений.
Оценка временного интервала, занимаемого положительным импульсом, проводится схемой постоянно. Слежение осуществляется с помощью элементов, подключенных к средней точке первичной обмотки согласующего трансформатора T. На среднем выводе первичной обмотки действует сигнал, форма которого представлена на рис. 2.11. Резистор R14, диод D5 и конденсатор C3 образуют схему выпрямителя и пассивного RC фильтра импульсного сигнала. В итоге на конденсаторе C3 появится положительное напряжение. Уровень этого напряжения будет прямо пропорционален длительности импульсов управления, формируемых микросхемой ШИМ преобразователя типа TL494. Напряжение, выделенное на конденсаторе C3, через резистор R10 подается на неинвертирующий вход внутреннего усилителя DA4 микросхемы TL494. На второй вход этого усилителя через вывод TL494/15 непосредственно поступает напряжение опорного источника +5 В. Логика работы этого каскада в части контроля длительности импульсов очень похожа на функционирование аналогичного узла из схемы, приведенной на рис. 3.2. Процесс контроля длительности импульсов управления включает в себя несколько этапов рабочего цикла узла защиты. На внутреннем усилителе DA4 производится постоянное сравнение уровней напряжений, действующих на его входах. Усилитель не оказывает влияния на работу ШИМ преобразователя, пока напряжение на выводе TL494/16 не превышает опорного уровня, постоянно установленного на выводе TL494/15. Увеличение нагрузки вторичной цепи источника питания будет отражаться на уровне напряжения, выделяемого на конденсаторе C3. Ширина управляющих импульсов будет возрастать, что вызовет увеличение напряжения на C3. Напряжение с конденсатора постоянно поступает на вход усилителя DA4. Пока оно ниже уровня, установленного на инвертирующем входе DA4, выходное напряжение усилителя равно нулю. Увеличение длительности выше установленного порога вызывает включение механизма ее постепенного ограничения. Усилитель на DA4 не охвачен обратной связью, поэтому на его выходе значение напряжения очень быстро изменяется. Повышение уровня на выходе усилителя DA4 приведет к блокировке усилителя ошибки DA3. На неинвертирующем входе ШИМ компаратора DA2 положительное напряжение также будет повышаться. При этом будет происходить принудительное ограничение длительности импульсов, формируемых схемой ШИМ преобразователя. Механизм активной защиты элементов источника питания включается с момента повышения напряжения на TL494/16 до уровня +5 В, когда напряжение на выходе DA4 начинает принимать положительное значение. Сначала наступает этап принудительного ограничения длительности импульсов управления. Сигнал рассогласования от DA3 растет, и ШИМ преобразователь старается компенсировать падение напряжения во вторичной цепи увеличением длительности импульсов управления. Когда происходит блокировка усилителя ошибки уровнем от DA4, продолжительность импульсов принудительно ограничивается. Если причина неконтролируемого увеличения потребления во вторичной цепи не устранена, то при достижении сигналом от усилителя DA4 уровня +3,2 В, на выходе ШИМ компаратора появляется устойчивый высокий уровень. Импульсных сигналов нет. Генерация выходных импульсов ШИМ преобразователем останавливается. Источник питания прекращает подачу энергии во вторичные цепи.
Фрагмент принципиальной схемы этого узла защиты (см. рис. 3.15) демонстрирует реализацию узла, ограничивающего длительности импульсов управления преобразователем, по сигналу датчика, полностью установленного во вторичной цепи источника питания. В предыдущем случае датчик располагался в силовой части схемы, а обработка его сигнала полностью была отнесена во вторичную цепь.
В случае возникновения КЗ по любому из каналов с отрицательными значениями напряжений, сигнал оповещения узла управления вырабатывается с помощью транзисторной схемы на Q1 и Q2. В базовой цепи транзистора Q1 включен делитель напряжения на резисторах R1 и R2. Питание делителя напряжения производится от разнополярных источников напряжения. Резистор R1 подключен к источнику опорного напряжения микросхемы TL494 с уровнем +5 В. Нижний по схеме вывод резистора R2 через резистор R3 соединен с цепью -12 В и через диод D1 с цепью -5 В. Номиналы сопротивлений резисторов R1 и R2 равны, поэтому напряжение на базе транзистора Q1 будет иметь небольшое отрицательное значение. Эмиттер этого транзистора соединен с общим проводом и, следовательно, переход база-эмиттер находится под напряжением обратного смещения. Транзистор закрыт, напряжение на коллекторе Q1 имеет высокий уровень. Поддерживание напряжения на базе, закрывающего транзистор Q1, возможно только в том случае, когда выдерживается расчетное соотношение напряжений -5 и -12 В. Если во вторичных цепях происходит КЗ, в результате которого одно из отрицательных напряжений изменяет свой уровень, то потенциал на базе транзистора Q1 начинает возрастать. В результате замыкания напряжения -12 В на диоде D1 появляется обратное смещение и блокируется подача напряжения -5 В на резистор R2. Базовый потенциал транзистора Q1 получит приращение положительного напряжения, подаваемого через R1. Аналогичная ситуация возникает при изменении напряжения -5 В до нулевого уровня. Диод D1 находится под воздействием отпирающего напряжения. Его анод подключается к общему проводу, а напряжение на катоде приобретает значение -0,7… -0,8 В. Это небольшое напряжение мало отличается от нулевого потенциала. На базе транзистора Q1 преобладающим оказывается положительный потенциал, которым транзистор открывается. Ключевая схема на транзисторе Q2 является нагрузкой транзисторного каскада на Q1. Коллектор транзистора Q2 через резистор R5 соединен с шиной питания ШИМ преобразователя, напряжение на которой в установившемся режиме находится в диапазоне +25. +30 В. Состояние ключа на Q2 является определяющим для функционирования микросхемы ШИМ преобразователя. В нормальном состоянии схемы защиты, когда в нагрузочной цепи уровни напряжений соответствуют номинальным, транзистор Q2 открыт и находится в насыщении. В этом состоянии происходит подключение резистора R5 через открытый транзистор Q2 к общему проводу. Диод D2 закрыт. Вывод 4 микросхемы TL494 через резистор R6 соединен с общим проводом. Внешние элементы не оказывают действия на работу ШИМ преобразователя. Когда происходит КЗ и последовательное переключение транзисторных ключей, напряжение на коллекторе закрытого транзистора определяется соотношением сопротивлений R6 и R5. Оно выбирается таким образом, чтобы уровень напряжения на выводе 4 схемы TL494 в момент срабатывания защиты составлял +5 В. Переключение транзисторов происходит достаточно быстро, поэтому напряжение на TL494/4 изменяется практически скачком. Резкое возрастание напряжение на неинвертирующем входе компаратора «мертвой зоны» блокирует логический элемент DD1. Работа схемы управления останавливается. Запуск ШИМ преобразователя возможен только после выключения и повторного подключения напряжения первичного питания, если предварительно устранена причина, вызывавшая КЗ или ненормированную перегрузку.
- Система технического обслуживания и ремонта энергетического оборудования : Справочник - Александр Ящура - Техническая литература
- Секреты радиомастеров - Андрей Кашкаров - Техническая литература
- КОРАБЛИ ВМФ СССР Том I. Подводные лодки Часть 2. Многоцелевые подводные лодки подводные лодки специального назначения - Юрий Апальков - Техническая литература
- Подводные лодки Часть 2. Многоцелевые подводные лодки. Подводные лодки специального назначения - Юрий Апальков - Техническая литература
- Грузовые автомобили. Освещение, сигнализация, контрольно-измерительные приборы - Илья Мельников - Техническая литература