Читать интересную книгу Пуанкаре - Алексей Тяпкин

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 36 37 38 39 40 41 42 43 44 ... 137

«Монсеньор, ваше письмо доказывает мне, что вы заметили раньше меня кое-какие результаты, которые я получил в теории фуксовых функций, — отвечает Пуанкаре на первое письмо из Лейпцига. — Я этому нисколько не удивился, так как знаю, насколько вы преуспели в познании неевклидовой геометрии, являющейся настоящим ключом к задаче, которая нас занимает. Я воздам вам должное в этом отношении, когда опубликую мои результаты…»

Но озадачивает Пуанкаре та оппозиция, которую он встретил со стороны немецкого коллеги в вопросе о названии новых функций. Клейн категорически против его предложения называть их фуксовыми. Он считает, что у Фукса слишком мало достижений в этой области математики. «…Я не оспариваю ту большую пользу, которую господин Фукс принес другим частям теории дифференциальных уравнений, — пишет Клейн в одном из своих писем, — но именно здесь его работы вызывают большое недоумение тем, что единственный раз, когда в одном из писем к Эрмиту он высказался об эллиптических модулярных функциях, проскальзывает фундаментальная ошибка, которую Дедекинд критиковал впоследствии слишком осторожно…» Клейн не склонен принижать значение ошибок Фукса, которые не позволили ему достичь правильных конечных результатов. Пуанкаре более великодушен, и в своем великодушии он не терпит компромиссов. «Что же касается названия этих фуксовых функций, — отвечает он, в свою очередь, Клейну, — я его не изменю. Уважение, которое я испытываю к господину Фуксу, мне это не позволит. К тому же, хотя и верно, что точка зрения ученого-геометра из Гейдельберга полностью отлична от вашей и моей, все же его работы определенно послужили исходной точкой и основанием всему тому, что делалось в этой теории…»

Дискуссия по поводу названия продолжается и в 1882 году. Пуанкаре, пытаясь убедить Клейна и научную общественность, аргументирует свою точку зрения. В письме от 30 марта 1882 года он пишет в Лейпциг: «…Вы были столь добры, что поместили в „Математических анналах“ мою работу об однозначных функциях, которые происходят из линейных подстановок, и сопроводили ее своим замечанием, излагая причины, по которым вы находите малоподходящими имена, данные мною этим трансцендентностям. Позвольте мне адресовать вам несколько строк, чтобы защитить мои названия, которые я выбрал не случайно…» Тон письма вежливый, но достаточно твердый. «Ученик» демонстрирует не строптивость, а упорство в отстаивании своей позиции, даже не научной, скорее нравственной. Если бы Алина Бугру видела своего брата, пишущего эти строки, она только по выражению его лица, по особому помаргиванию его глаз сразу догадалась бы, что им овладела стихия сопротивления. Так с ним случалось и в детстве. Покладистый и сговорчивый, когда дело касалось мелочей, Анри проявлял невиданное упорство, если затрагивались принципиальные вопросы, в которых он чувствовал себя правым. Но сопротивлялся он молча, пассивно, без бурного проявления своего негодования, без эмоциональных взрывов. Только хорошо знавшие его люди замечали по некоторым едва уловимым внешним признакам, что Анри чем-то недоволен и не намерен уступать.

Видимо, под влиянием этой дискуссии Пуанкаре счел необходимым в одной из своих больших статей по фуксовым группам, опубликованной в том же 1882 году, вставить пояснение: хотя группы, изученные Фуксом, «не выходят за рамки уже известных, все же чтение именно этого замечательного мемуара побудило меня к моим первым исследованиям и позволило найти закон образования фуксовых групп и дать ему строгое доказательство». По мнению Пуанкаре, даже побудительный мотив заслуживает того, чтобы его увековечить. Что ж, быть может, это действительно спорная позиция, но, безусловно, проистекающая из лучших, благородных побуждений.

Соревнование умов

Чем сильнее и ярче индивидуальность человека, тем труднее склонить его к согласию с другой сильной индивидуальностью. Каждый из них хочет идти своим путем, каждого могут убедить аргументы только особого, индивидуального характера. Но разногласия по поводу названия новых функций, конечно же, далеко не главное в переписке Пуанкаре с Клейном. Основное внимание они уделяют вопросам построения этих периодических трансцендентностей. Клейн отметил, что возможны еще более общие функции такого рода, если в дробно-линейных преобразованиях переменной величины, oт которой зависит функция, использовать не вещественные, а произвольные коэффициенты. Возникла задача построения этих функций наряду с фуксовыми и соответствующих им групп преобразований.

Поскольку интересы обоих ученых устремлены в одном направлении, в их отношения невольно проникает дух благожелательного научного соперничества. По своему творческому складу Клейн резко отличался от Пуанкаре. Судьба столкнула в научном противоборстве искрометного французского Моцарта и обстоятельного немецкого Сальери. Клейн предпочитал двигаться вперед постепенно, шаг за шагом, не пропуская ни единой промежуточной ступени. Не будь Пуанкаре, он развил бы этот раздел математики, последовательно переходя от одних частных видов функций к другим, более общим, от одной стадии обобщения к другой, более глубокой. Браться за решение задачи сразу во всей ее общности было несвойственно его творческому методу. Но быстрый и подвижный ум Пуанкаре навязывал ему совсем иной стиль работы. Не принять его правил игры — значило безнадежно отстать, попросту проиграть. И Клейну пришлось работать в совершенно несвойственной ему манере.

Много позднее, вспоминая новый «день творения» этих периодических трансцендентностей, и сам Клейн, и другие математики начинали изъясняться языком спортивных состязаний. Стремительность развития математической мысли нагнетает драматизм и неподдельный азарт, до предела учащенный ритм научной гонки придает остроту и накал этой интеллектуальной борьбе. Клейн скажет потом, что их научное соревнование напоминало скачки, на которых то один, то другой жокей вырывается вперед. «Клейн ошибался… — категорически заявляет в середине XX века математик Г. Фрейденталь, — с самого начала Пуанкаре настолько вырвался вперед, что догнать его Клейн так и не смог».

В таком отчаянном, чрезвычайно форсированном режиме работы еще резче проявляются индивидуальные черты творчества Пуанкаре, смелость его поиска, помноженная на широту обобщения. Доказывая существование новых групп, на которые указывал Клейн, он столкнулся с непредвиденными трудностями. Не спасала положение даже неевклидова геометрия, как это было в случае с фуксовыми группами. Но Пуанкаре находит выход из, казалось бы, безнадежной ситуации. Он изобретает прием, позволяющий ему воспользоваться неевклидовой геометрией двух- и трехмерных пространств, и подбирает ключи к новым группам. После этого им была решена проблема новых трансцендентных функций, соответствующих этим группам преобразований переменной величины.

(adsbygoogle = window.adsbygoogle || []).push({});
1 ... 36 37 38 39 40 41 42 43 44 ... 137
На этом сайте Вы можете читать книги онлайн бесплатно русская версия Пуанкаре - Алексей Тяпкин.
Книги, аналогичгные Пуанкаре - Алексей Тяпкин

Оставить комментарий