Читать интересную книгу Основы эконометрики в среде GRETL. Учебное пособие - Александра Малова

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 2 3 4

Рис. 5.2

Тест на совместную незначимость коэффициентов также можно провести автоматически. Для этого, после того как было оценено исходное уравнение, в меню окна результатов нужно выбрать Тесты – Избыточные переменные.

Рис. 5.3

После этого в меню можно выбрать одну из опций оценивания: оценить сокращенную модель (аналог того теста, который был показан выше) или проверить избыточность переменных с использованием теста Вальда [9].

Результат оценивания с использованием сокращенной модели представлен на рис. 5.4.

Рис. 5.4

При данном методе проверки также рассчитывается F-статистика и ее значение совпадает с тем, что было получено вручную. При этом приводится оцененный вариант короткой модели (модели с ограничением). Нулевая гипотеза состоит в том, что указанные на этапе тестирования переменные нулевые. Для проверки этой гипотезы можно воспользоваться рассчитанным значением F-статистики и сравнить его с критической точкой, как это было проделано, а можно обратить внимание на р-значение = 0,254184, то есть вероятность ошибиться, отвергнув нулевую гипотезу о незначимости коэффициентов, составляет примерно 0,26. Так как р-значение > 0,05 (больше зафиксированного уровня значимости), мы принимаем нулевую гипотезу, указанные коэффициенты не значимы на 5 %-ном уровне, и соответствующие регрессоры нужно исключить из модели. Корректный вариант модели – модель с ограничением.

Аналогично можно провести тест на избыточные переменные, используя тест Вальда (рис. 5.5).

Рис. 5.5

Результаты тестирования полностью совпадают с предыдущими вариантами теста.

6. Проверка правильности спецификации модели (RESET test)

Для проверки правильности спецификации линейной регрессионной модели используется RESET-тест. Он позволяет определить, помогает ли нелинейная комбинация оцененного значения зависимой переменной лучше объяснить изменения самой зависимой переменной. Если качество объяснения при этом улучшается, значит, модель специфицирована неправильно [9].

Проведем RESET-тест для модели

то есть проверим правильность спецификации этой модели [файл с данными wage2.gdt]. Оценим предложенную регрессию и сохраним оцененные значения зависимой переменной. Для этого в окне с результатами оценки выберем пункт меню Сохранить – Расчетные значения.

Рис. 6.1

После этого включим степени расчетных значений зависимой переменной в качестве регрессоров. Как правило, число степеней может равняться числу регрессоров в исходной модели, но начинать можно и с меньшего количества. Добавить новые переменные (степени расчетных значений зависимой переменной) можно через основное меню Добавить – Добавить новую переменную и ввести формулу, можно для четных степеней воспользоваться функцией меню Добавить – Квадраты выделенных переменных, а можно прямо в окне для оценки регрессии выбрать кнопку (+), которая позволит тут же создать новую переменную.

Рис. 6.2

Результат оценки регрессии с учетом степеней расчетных значений зависимой переменной представлен на рис. 6.3.

Рис. 6.3

Как видно из распечатки на рис. 6.3, все коэффициенты в модели стали незначимы, вновь добавленные регрессоры имеют также незначимые коэффициенты. Проведем формальный тест на совместную незначимость с использованием встроенных средств GRETL.

Рис. 6.4

По результатам теста р-значение < 5 %, то есть можно отвергнуть нулевую гипотезу о совместной незначимости коэффициентов при вновь добавленных регрессорах, хотя бы один из коэффициентов при добавленных трех регрессорах значим. Из эмпирических соображений попробуем исключить последний регрессор – четвертую степень для расчетных значений зависимой переменной – и оценим модель без него.

Конец ознакомительного фрагмента.

1 2 3 4
На этом сайте Вы можете читать книги онлайн бесплатно русская версия Основы эконометрики в среде GRETL. Учебное пособие - Александра Малова.

Оставить комментарий