Читать интересную книгу Штурмовой бой ГРОМ. Методика многофунционального тренинга - Станислав Махов

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 2 3 4 5 6 7 8

О жирах. Вот их у нас еще больше чем гликогена, намного больше – примерно от 30 000 до 100 000 и более килокалорий. Понятно, что подавляющее количество этих калорий хранится на наших талиях, животах, ногах и прочих прелестях, а в мышцах жира «всего-то» около 1900 калорий, т. е. примерно 200 гр. с небольшим.

Все приведенные здесь данные достаточно приблизительны и усреднены, и дают только общее представление о количестве хранящейся в нас энергии.

Непосредственным источником энергии для мышечных волокон всегда является аденозинтрифосфат (АТФ). Поэтому, все преобразования жиров, углеводов и других энергоносителей в клетке сводятся к постоянному синтезу АТФ. Т. е. все эти вещества «горят» для создания молекул АТФ.

Как все происходит. Для получения энергии аденозинтрифосфат (АТФ) расщепляется на аденозиндифосфат (АДФ) и фосфат (Ф). При этом расщеплении выделяется энергия, которая и используется для сокращения мышечных. Условно этот процесс можно записать вот так:

АТФ – > АДФ + Ф + Энергия(1)

Но полученной таким образом энергии хватает ненадолго (1–3 сек), так как запасы АТФ очень малы, да и используется полученная энергия для выполнения работы лишь на одну треть, остальные две трети выделяются в виде тепла. Поэтому тут же запускаются механизмы обратного синтеза АТФ, т. е. возникающие в результате расщепления АТФ продукты АДФ и Ф соединяются снова:

АДФ + Ф + Энергия – > АТФ (2)

Для осуществления этой реакции уже требуется энергия. Вот для ее получения и задействуются другие вещества. Причем, в зависимости от того, участвует ли кислород в получение этой энергии, или же этот процесс обходится без него, и различают анаэробное (без участия кислорода) и аэробное (с участием кислорода) энергообразование.

С помощью каких энергоносителей будет осуществляться восстановление АТФ, зависит от количества энергии требуемой в единицу времени?

При очень интенсивной мышечной работе, резко начинающей выполняться из состояния покоя, АТФ восстанавливается с помощью креатинфосфата (КФ) – вот и до него очередь дошла. В этом случае схема получения АТФ выглядит следующим образом:

КФ + АДФ – > Креатин (К) + АТФ (3)

В данной ситуации креатинфосфат распадается на Креатин и Фосфат с высвобождением необходимой энергии, которая и задействуется при соединении образовавшегося фосфата (Ф) с аденодиндифосфатом (АДФ) для синтеза АТФ. Для большего понимания можно попробовать записать вот так:

КФ + АДФ – > К + Ф + энергия + АДФ – > К + АТФ (3)

Такой процесс достаточно энергоэффективен, так как выход энергии в результате таких преобразований примерно соответствует энергии получаемой от расщепления АТФ.

Но, креатинфосфата в мышце содержится всего лишь в 3–4 раза больше, чем самих запасов АТФ, так что и его хватает лишь на 7-12 секунд предельно интенсивной работы, ну, или же на 15–30 секунд просто интенсивного сокращения мышц. А дальше – всё. Особенно эта ситуация бывает заметна у новичков, 30 секунд они весело машут ногами, а потом «сдыхают» – их запасы фосфатов, богатых энергий, практически исчерпаны, и организм в такой ситуации просто вынужден переключаться на получение энергии из менее эффективного источника-гликогена.

Гликоген, содержащийся в мышце, в таких вот условиях будет расщепляться без участия кислорода на молочную кислоту-лактат. Точнее даже без участия кислорода гликоген расщепляется не полностью, а лишь до образования молочной кислоты. Само собой при таком расщеплении будет выделяться энергия необходимая для синтеза АТФ. Упрощенно наша формула будет выглядеть так:

Гликоген – > Лактат + АТФ (4)

Ну, а более подробно вот так:

Гликоген – > Лактат (молочная кислота) + энергия + Ф + АДФ – >Лактат + АТФ (4)

Такая вот система носит название анаэробной лактатной системы или как еще ее называют анаэробная гликолитическая система.

Но вот беда, при таком способе расщеплении гликогена, за одно и тоже время энергии получается в несколько раз меньше, чем при расщеплении креатинфосфата. Вот поэтому и приходится снижать интенсивность выполняемой работы, ибо для более быстрых и мощных движений энергии просто не хватает.

Анаэробное расщепление гликогена начинается практически с самого начала работы, ведь наш организм не знает заранее, какая нагрузка его ждет, поэтому и старается активизировать все свои энергетические системы практически одновременно, чтобы не допустить перерывов в работе. На свою максимальную мощность анаэробная лактатная система выходит примерно через 15–20 секунд работы предельной интенсивности, т. е. когда заканчиваются запасы креатинфосфатов. Но действие и этой системы не может длиться долгое время, так что её хватает на 2–3 минуты очень интенсивной работы. И тут дело не в том, что запасы гликогена заканчиваются, нет, его остается еще достаточно много для продолжения работы. Причина невозможности продолжать работу заданной интенсивности кроется в молочной кислоте. При продолжительных интенсивных нагрузках количество образуемой молочной кислоты превышает порог ее возможного усвоения и утилизации другими мышцами и буферными системами крови. Ну, а далее, упуская слишком умные термины и химические реакции, избыток молочной кислоты в конечном счете приводит к снижению скорости расщепления гликогена, что приводит к уменьшению количества синтезируемой АТФ и как следствие, к снижению работоспособности. В такой ситуации нам ничего не остается делать, как остановиться, что бы «перевести дыхание» и дождаться вывода из работающих мышц излишков молочной кислоты, или же еще снизить интенсивность выполняемой работы, что бы запустить следующую систему получения энергии – аэробную.

Так вот, гликоген для образования энергии может распадаться не только на молочную кислоту (лактат). В присутствии достаточного количества кислорода (О2), гликоген может распадаться до углекислого газа (СО2) и воды (Н2О), конечно же с высвобождением энергии. Но процесс этот не быстрый, и проходит он в два этапа: сначала гликоген расщепляется до уже известной нам молочной кислоты, а потом происходит окисление молочной кислоты. На выходе получается углекислый газ, вода и большое количество энергии, причем даже большее, чем при анаэробном расщеплении гликогена, ведь в ход идет еще и молочная кислота, из которой тоже извлекается энергия. Соответственно, наша формула будет выглядеть следующим образом:

Гликоген + О2 – > Н2О + СО2 + АТФ (5)

Такая же реакция может происходить и с жирными кислотами, которые так же превращаются в воду и углекислый газ:

Жирные кислоты + О2 – > Н2О + СО2 + АТФ (6)

Но и в работе аэробной системы тоже не все так просто. Запасов гликогена и жиров хватает на многие и многие часы мышечной работы, при таком способе получения энергии не образуется молочная кислота, которая влияет на утомляемость мышц, но зато имеются ограничения по количеству кислорода, так как его поступление зависит, в основном, от работы сердечно-сосудистой и дыхательной системы. Чем больше сердце и легкие могут поставить работающим мышцам кислорода – тем больше энергии можно произвести таким аэробным способом.

Причем для сгорания жирных кислот кислорода требуется еще больше, чем для расщепления гликогена – по некоторым данным больше на 12%. Эффективность энергообеспечения за счёт жировых запасов зависит еще от скорости протекания липолиза (процесса расщепления жиров на составляющие их жирные кислоты) и от скорости кровотока в жировой ткани для обеспечения своевременной доставки этих жирных кислот к мышечным клеткам.

Аэробная система, как и другие системы получения энергии для синтеза АТФ запускается практически сразу же в момент начала физических нагрузок, но «раскочегаривается» очень медленно и постепенно, поэтому на свою максимальную мощность выходит после 2–3 минут интенсивной нагрузки. Причем, как уже говорилось, вначале преобладает распад гликогена, и только потом, минут через 20–30 начинает преобладать распад жирных кислот.

Вывод:

У нас всегда одновременно работают 4 энергетические системы:

1) Аэробная алактатная (фосфатная) (АТФ, креатинфосфат);

2) Анаэробная лактатная (гликолитическая) (гликоген мышц и печени и глюкоза крови);

3) Аэробный гликолиз (гликоген мышц, печени и глюкоза крови);

4) Аэробное окисление жирных кислот (жирные кислоты);

Их запасы можно увеличивать за счет тренировок, так же как и их эффективность за счет улучшения работы сердечно-сосудистой и дыхательной системы. Можно «переучить» мышцы для работы под определенной системой. Какими тренировками – это уже другой вопрос.

Классификация тренировочных нагрузок по их интенсивности

Во время выполнения тренировочных нагрузок энергообеспечение работающих мышц осуществляется тремя путями, в зависимости от интенсивности работы:

1 2 3 4 5 6 7 8
На этом сайте Вы можете читать книги онлайн бесплатно русская версия Штурмовой бой ГРОМ. Методика многофунционального тренинга - Станислав Махов.

Оставить комментарий