Шрифт:
Интервал:
Закладка:
Обсерватерии на орбитах
Исследование космоса с помощью высотных геофизических ракет имеет один существенный недостаток. Пребывание ракеты (а стало быть, и астрономических приборов) на максимальной высоте весьма кратковременно. Между тем в ряде случаев требуются наблюдения гораздо большей длительности. Отсюда и родилась идея о создании Орбитальных Астрономических Обсерваторий (ОАО).
Собственно, уже третий советский искусственный спутник Земли весом 1,3 т нес аппаратуру для исследования микрометеоритов и космических лучей, а потому его можно считать предшественником будущих орбитальных астрономических обсерваторий. Тем более летающими обсерваториями можно было бы считать такие советские спутники, как 17-тонный «Протон-4». Однако в дальнейшем под ОАО мы будем понимать спутники, предназначенные только для астрономических исследований. С этой точки зрения первыми специализированными ОАО были американские спутники «ОСО-1» и «ОСО-2», выведенные на орбиты в 1964 и 1965 гг. Эти Орбитальные Солнечные Обсерватории (ОСО) получили новые данные о коротковолновом солнечном излучении, солнечных вспышках и космических радиоисточниках. Вес их аппаратуры не превышал 100 кг.
Американские ОСО запускаются на почти круговые орбиты высотой около 500 км. Основание ОСО имеет форму колеса и состоит из нескольких отсеков, несущих различную аппаратуру. Главная трудность в создании ОАО — обеспечение нужной ориентации спутника и сохранение этой ориентации достаточно продолжительное время. В американских ОСО устойчивость ориентации обеспечивается вращением колеса, основы станции, с угловой скоростью около 30 оборотов в минуту. Кроме спектрографов и других приборов на ОСО имеются специальные самописцы, предназначенные для хранения информации.
В настоящее время ОАО, запускаемые в США, снабжаются оптическими и радиотелескопами, а также аппаратурой для изучения гамма-лучей и рентгеновского излучения, поступающих от космических источников. Телескопы ОАО способны эффективно изучать планеты, звезды и галактики. Насколько точна система стабилизации ОАО, можно судить по следующему примеру. Американская ОАО «Коперник» весом 2,2 т, запущенная в 1972 году, способна в течение часа сохранять нужное направление с точностью до 0,1 секунды дуги! Под таким углом виден футбольный мяч с расстояния в 650 км.
В будущем и эта точность повысится. В США в 80-х гг. текущего столетия проектируется запуск орбитального самолета, на борту которого будет находиться рефлектор диаметром 4 м. Точность стабилизации при этом составит 0,005 секунды дуги. Заметим, что если этот проект будет осуществлен, в орбитальный 4-метровый рефлектор удастся, вероятно, рассмотреть планеты у ближайших звезд!
Крупные размеры уже сегодня имеют орбитальные радиотелескопы. Например, ОАО «Эксплорер-38» имеет четыре антенны, раздвигающиеся в длину до 220 м.
Одной из первых советских ОАО был спутник «Космос-215», запущенный в апреле 1968 года и оснащенный 8 телескопами (в том числе рентгеновским). В некоторых случаях ОАО укрепляется на космических пилотируемых кораблях. Примером может служить советская ОАО «Орион-2», установленная на космическом корабле «Союз-13» (1975 год).
Главное в этой обсерватории — 24-сантиметровый менисковый телескоп системы Максутова, снабженный объективной призмой. Заметим, что все оптические элементы (включая зеркала) сделаны из кварца, пропускающего коротковолновое излучение. Спектры звезд, созданные объективной призмой, фиксировались на специальной фотопленке, высокочувствительной к ультрафиолетовым лучам.
За пять дней работы на орбите с помощью «Ориона-2» были получены многие тысячи спектрограмм слабых звезд (до 13-й звездной величины). Выявлено много «ультрафиолетовых» звезд, свечение которых в невидимом глазом ультрафиолете особенно сильно. Впервые снята «ультрафиолетовая» спектрограмма одной из планетарных туманностей и изучены атмосферы ряда холодных звезд. Словом, получен богатейший эмпирический материал, обработка и изучение которого продолжается.
В апреле 1973 г. в Советском Союзе был запущен советско-польский спутник «Коперник-500». Эта орбитальная астрофизическая обсерватория собрала много ценных данных о физике Солнца и характере солнечно-земных связей. Немалых успехов добилась и аналогичная американская орбитальная обсерватория «Коперник».
Орбитальные Астрономические Обсерватории разных типов, размеров и назначения прочно вошли в повседневную практику современной космонавтики. Предстоит и более диковинная задача — создание астрономических обсерваторий на небесных телах.
В Договоре о принципах деятельности государств по исследованию и использованию космического пространства, включая Луну и другие небесные тела, в частности, говорится:
«Все станции, установки, оборудование и космические корабли на Луне и на других небесных телах открыты для представителей других государств — участников настоящего договора на основе взаимности» («Правда», 28 января 1967 г.). Вот почему вполне своевременным выглядит проект Лунной Межпланетной Лаборатории (ЛМЛ), разработанной Международной Астронавтической Академией. Этот проект, по мнению его авторов, может быть осуществлен совместными усилиями ряда стран и в первую очередь СССР и США не позже 1985 года. Среди главных задач ЛМЛ — астрономические и астрофизические наблюдения с Луны [14].
Перспективы наземной астрономии
Успехи космонавтики в изучении тел Солнечной системы весьма внушительны. Люди и автоматы многократно побывали на Луне, доставили на Землю лунный грунт — наряду с метеоритами единственное пока внеземное вещество, исследованное в земных лабораториях. Лунный мир мы теперь знаем куда более досконально, чем до начала космической эры.
Космонавтика принесла и разочарование. Вопреки надеждам, планеты земного типа Меркурий, Венера и Марс оказались гораздо более похожими на Луну, нежели на Землю. Нигде в Солнечной системе не найдено следов жизни. Пришлось свыкнуться с мыслью, что человечество одиноко в околосолнечном пространстве и внеземные цивилизации остается искать где-то в звездных далях. В лучшем случае будущие исследователи планет Солнечной системы, быть может, где-нибудь встретят лишь низшие формы жизни.
Зато космонавтика открыла в окрестностях Солнца много нового. Это и неизвестные до того спутники планет-гигантов, и мощные извержения на них, и удивительное строение кольца Сатурна, и кольца других планет. Радикальному пересмотру подверглись прежние взгляды на физическую природу Марса и Венеры. Предстоят и новые, непосредственные исследования всех тел Солнечной системы, и несомненно, что в этом направлении результаты превзойдут все то, что может быть достигнуто наземными астрономическими инструментами.
У некоторых несведущих лиц все эти достижения породили наивные сомнения: а нужна ли вообще астрономия? Не заменит ли ее полностью космонавтика, и астрономия в конце концов за ненадобностью просто отомрет?
Думать так может лишь тот, кто не представляет себе масштаба Вселенной. Еще очень долго (если не всегда) космические полеты будут ограничены пределами Солнечной системы. Дальний же космос, мир звезд и галактик, останется предметом астрономических исследований с поверхности Земли или с орбитальных обсерваторий.
В настоящее время неизвестны способы и средства достижения звезд. Тут прежде всего удручают сроки. На существующих в настоящее время ракетах до ближайших звезд придется лететь миллионы лет.
Популярные одно время фотонные ракеты, увы, не решают проблему. Их стартовые массы нереально велики, и вряд ли когда-нибудь они вообще будут построены. Не спасают дело и межзвездные прямоточные самолеты, засасывающие межзвездную среду, — заборники таких самолетов должны иметь поистине астрономические размеры. По-видимому, реактивный принцип движения, столь блестяще оправдавший себя в окрестностях Солнца, для межзвездных перелетов непригоден. Из нереактивных способов движения нам пока что известен лишь «солнечный парус». Но он относится к двигателям «малой тяги» и тяга эта быстро уменьшается с удалением от Солнца.
Ко всем перечисленным трудностям добавляются сложнейшие проблемы обмена информаций со «звездолетчиками». Обмен растягивается по меньшей мере на годы и десятилетия, а в случае релятивистских фотонных ракет связь в полете с Землей и вовсе становится практически неосуществимой. Наконец, полеты в ракетах с малой скоростью и сменой на них поколений космонавтов не только выглядят нелепой утопией, но просто невозможны, так — как неясно, где взять для таких полетов горючее.