Шрифт:
Интервал:
Закладка:
Сначала, принимая звуковые волны, то есть человеческую речь, машина делит ее на различительные признаки. Затем она сравнивает их с эталоном целого слова, которое хранится в ее электронной памяти. Но не в виде полной записи слова, а в виде последовательности различительных признаков, кодирующих его.
У современных вычислительных машин есть два вида памяти: оперативная память, небольшого объема, но быстродействующая, и память долговременная, значительно превосходящая первую в объеме и столь же значительно отстающая в скорости. Быстрая оперативная память может быть использована для переработки звуков речи в различительные признаки, а память большого объема — для хранения всего словаря.
Сначала эта модель была предложена из чисто языковедческих соображений. Затем исследования, проведенные в нашей стране под руководством Л. А. Чистович, показали, что распознавание речи человеком также происходит по сходному принципу. Чтобы понимать человеческую речь, машина должна, оказывается, делать это «по-человечески»!
В настоящее время в нашей стране и за рубежом создано немало машин, распознающих человеческую речь. И с каждым годом они совершенствуются. Как пример приведем электронно-вычислительную систему «ТРЕШОЛД-500», созданную в Англии. Практическое применение нашло уже более полутысячи систем «ТРЕШОЛД». Она используется для контроля качества продукции на конвейерах, для управления станками, для сортировки товаров, для опознания личности, для проверки багажа в аэропортах, в системах программированного обучения, для обслуживания парализованных больных в больницах (выключить электроприбор, вызвать врача или медсестру и т. п.)…
Как же распознает речь эта система? Звуки, которые улавливает электронное «ухо» машины, разлагаются на составляющие элементы, преобразуются в двоичный код и поступают в память ЭВМ. Тут они группируются в пять семейств по тридцати двум фонетическим признакам (создатели «ТРЕШОЛДа» ограничились делением на согласные, гласные, короткие паузы, длинные паузы, взрывные звуки). Чтобы машина смогла определить еще и индивидуальные особенности голоса, слова произносятся многократно…
ЭВМ расчленяет длительность произношения слов на шестнадцать равных временных промежутков. Затем выявляет в каждом из них тридцать два фонетических признака. Слово преобразуется в числовой код по этим признакам. Наконец, после многократных повторов одного и того же слова машина выводит «усредненный код», то есть получает характеристики индивидуального голоса, понятные ее электронному мозгу.
Общая емкость словаря системы «ТРЕШОЛД» — до двухсот двадцати слов. Словарь записывается на магнитной ленте, которая хранится в библиотеке словарей системы. Естественно, что словарь составляется для каждого человека и фиксирует особенности голоса с их индивидуальным тембром, окраской и прочими особенностями. Причем машина различает слова, хранящиеся в ее памяти, независимо от того, в каком настроении мы их произнесем— со страхом, радостью, болью и т. д.
У колыбели языка
Конечно, система «ТРЕШОЛД» — явление не уникальное. Например, в университете Карнеги — Меллона, в США, разработана экспериментальная система «захвата речи», которая позволяет распознавать до девяноста пяти процентов фраз. Причем произносит эти фразы не один человек, а пять, три мужчины и две женщины, а словарь содержит более тысячи слов.
Работы по «захвату речи» ведутся в Национальном исследовательском центре дальней связи во Франции, ведут их также советские ученые — в Москве, Ленинграде, Тбилиси, Киеве… Рассказ об этих работах занял бы много времени, к тому же они все-таки относятся более к технике, чем к лингвистике, основной теме нашей книги.
Вам, пожалуй, стала ясна огромная роль фонологии в попытках научить машину говорить «по-человечески». Еще более важную роль может сыграть эта дисциплина в понимании того, каким же образом сигнальная система наших прапрапрапредков, приматов, превратилась в человеческую речь.
Человеческие языки в среднем имеют тридцать-сорок атомов, фонем, из которых строятся молекулы слов. Изучая системы сигнализации наших ближайших родственников по древу жизни — приматов, ученые обнаружили, что число осмысленных сигналов, каждый из которых соотнесен с определенной ситуацией, находится в пределах двадцати-сорока знаков. Столько их у шимпанзе, у прославившихся на весь мир диких обезьян Японии, у других приматов.
Случайно ли это совпадение? По всей вероятности, нет, не случайно. Видимо, и у наших прапрапрапредков первоначально существовала сигнализация, состоящая из нескольких десятков знаков. Анализ черепов питекантропов, обезьянолюдей, пещерных людей, неандертальцев, показывает, что у них не было речи в нашем понимании, то есть человеческой членораздельной речи, представляющей сложную иерархию разных уровней — фонем, морфем, слов, предложений. По всей видимости, у них была примерно такая же примитивная сигнальная система, как и у человекообразных обезьян.
Трудовая деятельность вызвала необходимость в новых словах-сигналах. И не в одном-двух, а десятках, сотнях, тысячах. Остальным приматам достаточно было тридцати-сорока сигналов, чтобы выразить тревогу, удовольствие, призыв и тому подобные примитивные «понятия» и чувства. «Человеку разумному» этого было недостаточно.
Казалось бы, самый простой путь — увеличивать число сигналов-знаков, наращивать словарь. Однако это потребовало бы колоссального объема памяти, причем, если говорить языком кибернетики, памяти оперативной, быстродействующей. А ее объем, как известно, не может быть большим, иначе потеряется быстрота…
И тогда эволюция повела наших предков иным путем — тем самым, что ныне в какой-то мере имитируют современные ученые, когда обучают ЭВМ понимать человеческую речь. Нерасторжимые в прежней системе — в системе сигнализации приматов — сигналы-знаки стали делиться на элементарные различительные признаки. Из них стали формироваться фонемы — уже не простые «знаки ситуации», а единицы языка, служащие для образования единиц более высокого порядка — морфем, слов, а затем и предложений.
Вероятно, в недалеком будущем лингвисты в содружестве е антропологами, психологами, кибернетиками, социологами смогут показать наглядно, в деталях, как происходило превращение сигнальной системы человекообразных обезьян в язык наших предков… Как трудовая деятельность вызвала потребность в новых сигналах… Как вместе с ростом словаря возрастала и емкость памяти… Как трудовые навыки и увеличение объема словаря способствовали эволюции мозга… Как вместе с развитием мозга шло совершенствование речевого аппарата… Как законы языка закреплялись в сознании отдельных членов общества и всего общества…
Одним словом, как родился и развивался наш человеческий язык, справедливо именуемый чудом.
Зоолингвистика
Фонология находит еще одно интереснейшее применение. С помощью методики, разработанной в фонологии, некоторые исследователи пробуют описывать сигнализацию у дельфинов, обезьян и других животных.
Советский ученый Н. И. Жинкин, специалист по физиологии и психологии речи, проделал обстоятельную работу, посвященную звуковой сигнальной системе обезьян — гамадрилов.
Работа эта была проведена по всем правилам современной лингвистики. «Звуковое» измерение криков обезьян было проделано с помощью осциллографа. Спектрограммы позволили Жинкнну произвести «микроскопический анализ» звуков. «Речевое» измерение удалось провести с помощью рентгеноскопа. Он точно зафиксировал артикуляционные движения, которые делало горло обезьян при «разговоре».
И, наконец, полученные данные были обработаны согласно теории фонологических различительных признаков. Оказалось, что сигналы-«слова» гамадрилов составлены по меньшей мере из десяти элементарных звуков. Например, тихий и довольно сложный по звуковому составу сигнал удовольствия, который очень приблизительно можно передать как хон, где х — нечто похожее на придыхание, а он — ясно слышимое о с носовым резонансом — состоит из трех элементарных звуков. В принципе, пользуясь этими элементами, можно построить около тысячи сигналов-«слов». Гамадрилы же пользуются по самой щедрой оценке, всего лишь сорока сигнальными знаками. Больше им не требуется: «ведь жизнь обезьяньего стада неизмеримо проще, чем жизнь человеческого коллектива. Это принципиально разные явления и принципиально различаются языки людей и сигнальные системы животных.
Порой сложное, «двухэтажное», строение имеют системы сигнализации и других животных, а не только высокоразвитых обезьян. Так, у курицы общий сигнал тревоги разделяется на четыре различных сигнала: опасность близко, опасность далеко, опасность — человек и опасность — коршун. Сигнал призыва, повторенный дважды, означает категорический приказ. Всего в «курином языке» около десятка знаков-кирпичиков, из которых слагается два-три десятка различных сигналов. А ведь в принципе из них можно было образовать сотни новых сигналов! Однако жизнь курятника еще более проста, чем жизнь стада гамадрилов. И поэтому система сигнализации у кур обходится двумя десятками «слов».
- Язык в языке. Художественный дискурс и основания лингвоэстетики - Владимир Валентинович Фещенко - Культурология / Языкознание
- Введение в общую теорию языковых моделей - Алексей Федорович Лосев - Языкознание
- Книга о букве - Александр Кондратов - Языкознание