Шрифт:
Интервал:
Закладка:
— Становись! Джек!
Не знаю, как мне это удалось, но я отстранился от стены и шагнул к воздушному шлюзу. Стеклянная перегородка с негромким шипением ушла в стену.
— Иди же, Джек! Давай!
Перед глазами у меня поплыли цветные пятна. Голова кружилась, меня подташнивало. Спотыкаясь и едва переставляя ноги, я шагнул внутрь воздушного шлюза и уперся во вторую перегородку. С каждой секундой дышать было всё труднее. Я понял, что скоро наступит удушье.
Снаружи здания снова послышалось низкое ритмичное гудение. Я медленно повернулся и посмотрел назад.
Стеклянная перегородка закрылась.
Я посмотрел вниз, на себя, но почти ничего не увидел. Моя кожа казалась черной от налипшей на неё пыли. Всё тело болело. Рубашка тоже почернела от пыли. Сверху хлынули струи холодного раствора, и я закрыл глаза. Потом раздалось громкое гудение — заработали вентиляторы. Я видел, как потоки воздуха уносят пыль с моей рубашки. Зрение постепенно прояснилось, но я по-прежнему не мог дышать. Рубашка выскользнула у меня из пальцев и упала, распластавшись на решётке у моих ног. Я наклонился, чтобы поднять её. Я весь дрожал, колени подгибались от слабости. Я слышал только гул вентиляторов.
Меня затошнило. Колени подогнулись, и я привалился к стене.
Я посмотрел на Рики и Мае за второй стеклянной дверью. Они были как будто где-то далеко-далеко. Пока я смотрел, они всё отдалялись и отдалялись. Вскоре они оказались где-то совсем далеко, и я перестал о них думать. Я понял, что умираю. Я закрыл глаза и рухнул на пол. Гул вентиляторов затих вдали, и наступила холодная абсолютная тишина…»
Этот впечатляющий фрагмент я позаимствовал из романа известного американского писателя и режиссера Майкла Крайтона «Добыча» (Prey, 2002), опубликованного у нас под названием «Рой». В нем рассказывается, как рой «наночастиц» вышел из-под контроля создавших его инженеров и стал представлять серьезную опасность, нападая на людей и животных и удушая их. К счастью, пока всё, описанное в романе, остается фантастикой — ученым не удалось решить целый ворох проблем, вставших на пути создания программируемых нанороботов, а значит, до саморазвивающегося роя ещё очень далеко. Тем не менее выгоды, которые принесут нанотехнологии, столь велики, что раньше или позже такие роботы появятся. Ученые рассчитывают, что подобные крошечные машинки будут создавать всё что угодно: от миниатюрных деталей для компьютеров и новых лекарств против рака до качественно нового оружия…
Революция снизуСам термин (а точнее — приставка «нано») происходит от греческого слова nannos — карлик (отсюда нанометр — одна миллиардная доля метра).
Концепция нанотехнологии впервые прозвучала 29 декабря 1959 года — в речи выдающегося американского физика Ричарда Фейнмана под названием «Внизу полно места» (Plenty of Room at the Bottom). Сорок лет спустя это технологическое направление всё еще находилось в зародышевой стадии развития, несмотря на постоянную рекламу в прессе. Только теперь, уже в XXI веке, начали появляться первые практические результаты и финансирование направления резко возросло.
Понятие «нанотехника» было введено в 1974 году японцем Норио Танигучи. Первые средства для нанотехники были изобретены в швейцарских лабораториях IBM. В 1982 году был создан растровый туннельный микроскоп (его создатели четырьмя годами позже получили Нобелевскую премию), а в 1986 году — атомный силовой микроскоп.
Почему для развития нанотехнологии так важны эти приборы? Дело в том, что если в электронный микроскоп атомарные размеры можно рассмотреть лишь при определенных условиях, то новые зонды дают более точную картину. Слово «микроскоп» здесь вводит в заблуждение. Благодаря этому изобретению стало возможным манипулирование мельчайшими частицами материи. Исследователи переносили атомы из одного места в другое и составляли из них неприличные слова. На этой основе в начале 1990 года компания XEROX создала молекулярного робота, который способен вылавливать молекулы, проводить их через мембрану, а затем использовать получившиеся атомы для «художественного конструирования».
Современная технология позволяет манипулировать отдельными атомами, но при этом выглядит довольно неуклюже: огромный прибор хватает отдельный атом и транспортирует его. Куда более продуктивным представляется путь, предложенный «крестным отцом нанотехнологий» Эриком Дрекслером в книге «Машины создания: Грядущая эра нанотехнологий» (Engines of Creatien: The Coming Era of Nanotechnology, 1986). В ней этот американский инженер описал специальные наномашины, называемые «ассемблерами» и способные работать с атомами.
Дрекслер дает следующее определение: «Ассемблер — это молекулярная машина, которая может быть запрограммирована строить практически любую молекулярную структуру или устройство из более простых химических строительных блоков».
Итак, наномашины должны уметь захватывать атомы и соединять их между собой, причем не хаотично, а в соответствии с заданным алгоритмом.
О том, что такой проект может быть реализован со дня на день, сообщила группа исследователей из Нью-йоркского университета. Американский медицинский наноробот, введенный в организм человека, сможет самостоятельно передвигаться по кровеносной системе и очищать его от микробов или зарождающихся раковых клеток, а саму кровеносную систему — от отложений холестерина. Он сможет изучить, а затем и исправить характеристики тканей и клеток.
Профессор химии Надриан Симан, возглавляющий исследования, заявил, что пока удалось лишь ограничить движение наномашин в молекулярной среде, но в будущем его невидимые роботы станут полностью управляемыми. Ученые хотят запрограммировать молекулы так, чтобы те могли самоорганизовываться и объединяться с другими молекулами в более крупную структуру. При этом наномашина будет имеет две своеобразные «руки» — молекулы, которыми исследователи вроде бы научились управлять, но что-либо сделать (например, добавить в раствор определенный химикат) устройство пока не умеет: раствор воздействует одновременно на все молекулы.
Другой проект, нацеленный на создание первого наноробота, — NanoWalker — разрабатывается на базе Лаборатории биотехнологий при Массачусетском технологическом институте под руководством Сильвина Мартеля.
Пока что механизмы, сконструированные в рамках этого проекта, нанороботами назвать нельзя — слишком уж они велики, размером с копеечную монету, — но ученые уверены, что в ближайшем будущем их размеры удастся уменьшить.
Управление роботами производится посредством инфракрасных датчиков, помещенных в их тела, — камера отслеживает местоположение роботов и направляет к месту выполнения задания. Некоторые крошечные машины оснащены микроскопами, которые позволяют им получать и транслировать изображение атома, над которым предстоит потрудиться.
По словам Мартеля, нынешняя квалификация его подопечных только определяется. Уже созданы модели, которые теоретически могут использоваться в фармакологии и осуществлять синтез химических препаратов и лекарств.
«Умная пыль» и «квантовые точки»Появились и более экзотические варианты наносистем. Так, прототипом роя наночастиц может стать «умная пыль» (Smart Dust). Ее создала группа исследователей под руководством профессора химии и биохимии Майкла Сейлора из Университета Калифорнии в Сан-Диего.
«Эти пылинки — ключ к разработке роботов размером с песчинку, — говорит Сейлор. — В будущем можно будет создать миниатюрные устройства, передвигающиеся в крошечных средах, вроде вен или артерий, к определенным целям, обнаруживать там химические или биологические составы и передавать информацию о них во внешний мир… Такие устройства могли бы использоваться, чтобы контролировать чистоту питьевой или морской воды, обнаруживать опасных химических или биологических агентов в воздухе и даже находить и уничтожать поврежденные клетки в организме человека».
Создание «умной пыли» — это комбинирование электрохимического процесса механической обработки и химических модификаций. Берется кремниевый чип, из которого химикатами получается пористая фотонная структура. Затем эта структура модифицируется, чтобы получилось цветное двустороннее зеркало: красное с одной стороны, зеленое — с другой. Стороны пористой зеркальной поверхности ученые наделили практически противоположными свойствами. Одна — гидрофоб, то есть водоотталкивающая, но «любящая» маслянистые вещества, другая — гидрофил, привлекательная для воды. При появлении воды пылинки начинаются поворачиваться «гидрофилической» красной стороной к воде, а зеленой «гидрофобической» — к воздуху. Когда же появляется маслянистое (нерастворимое в воде) вещество, частички окружают каплю, прижимаясь к ней «гидрофобической» стороной. А поскольку стороны разноцветные, то по окраске можно определить, что творится в такой «пыльной» среде. И это лишь один из вариантов. Частицы могут быть запрограммированы на миллионы различных реакций, что дает возможность обнаружить присутствие тысяч химикалий одновременно. Длины волн света, отраженного от поверхностей пылинок, после того как поры отреагируют на химического или биологического агента, станут своего рода штрихкодом, который можно считать с помощью специального сканера. В то время как каждая частичка слишком мала, чтобы по ее цвету определить изменения, коллектив из сотен или тысяч пылинок уже достаточно «заметен» для лазера.