Чтобы стимулировать создание потребительных ценностей наиболее продуктивных решений, важно научиться оценивать и сравнивать их по возможности потенциального использования в совокупном производстве. Проблемой здесь является отсутствие точных и понятных критериев качественной оценки различных по своему содержанию продуктов интеллектуальной деятельности.
Применяемый нами метод научных абстракций позволяет увидеть, что множество, по своему, результативных исследований и разработок с неодинаковыми потребительными ценностями имеют одно общее свойство, характеризующее возможность их потенциала быть использованным в совокупном производстве, упорядоченном и формализованном как система.
Можно сказать, что каждое продуктивное решение, обладающее свойством потребительной ценности, представляет элементарную частицу полезного потенциала в бесконечном числе – множестве результатов исследований и конструкторских разработок.
Множество элементарных частиц, накапливаясь в едином информационном пространстве, образуют совокупный научно-технический потенциал, капитализируемый в экономической системе. Обладая свойством потребительной ценностью, каждая частица продуктивного знания, становятся частью (элементом) большой системы совокупного производства и встраиваются в эту систему в особом, информационном порядке.
Общее свойство элементарной частицы – продуктивного решения заключается в способности капитализировать свой информационный потенциал в определенном месте структурируемой системы, отрасли производства или области научной деятельности, что является фактом, характеризующим ее как системную значимость. Поэтому формальное выражение ценности некого локального потенциала элементарной частицы, исчисленное в отношении к суммарному потенциалу определенной в масштабе экономической системы является математически корректным определением его системной значимости.
Результаты интеллектуальной деятельности, капитализируемые в производстве, могут оцениваться и сравниваться между собой в соответствии с системной значимостью своего потенциала, точно так же, как и товары, продаваемые или обмениваемые по своей сравнительной меновой стоимости.
Точно так же, как и товары, продуктивные решения создаются в процессе общественного производства, но при этом несут в себе частицу, еще не овеществленного, но практически результативного человеческого труда. И хотя, как результат, продуктивное решение не является самостоятельным предметом или материальной ценностью, но его потребительная ценность и системная значимость, также как потребительная и меновая стоимость товара, становятся базовыми категориями оценки и сравнения.
7. Критерий системной значимости
Критерием оценки решения математической задачи, принимаемым за образец, является определение правильного и достоверного результата, полученного посредством применения метода вычисления, широко известного, либо разработанного впервые, позволяющего производить операции с числовыми рядами заданной системы, и удовлетворяющего поставленным условиям задачи.
Действия наиболее результативных, общепризнанных математических методов повторяется в различных задачах, и имеют самое широкое распространение. Точно также, в системе производства и управления, методы наиболее удачных продуктивных решений, найденные однажды, затем многократно повторяются и распространяются в аналогичных областях и сферах жизнедеятельности в качестве инновационного потенциала.
В процессе интеллектуальной деятельности, описываемом как математическая модель, разрабатывается определенная область предметных знаний, неупорядоченное множество элементов которой составляет формальную систему задач. Процесс операционной разработки осуществляется по методу, позволяющему создавать более глубокое информационное описание заданной предметной области. На выходе из разработки создается результат, удовлетворяющий поставленному условию предметного описания, и имеющей потенциал капитализации в производстве.
Инновационный потенциал капитализации данного продуктивного решения может не ограничиваться решением одной локальной задачи, и, получая широкое распространение в областях с аналогичными задачами предметного значения, приобретает особую системную значимость метода – средства, придающего импульсный толчок развития области, определенной как система задач (макросистема) в масштабе общественного производства.
В сфере материального производства инновационный цикл каждого предприятия, осуществляющего разработку продукции нового поколения, начинается постановкой задачи выпуска, условием которой является максимально полное удовлетворение потребительного спроса. Размеры возможного предложения устанавливают в пределе потенциального спроса, области и границы которого в начале исследования не имеют точного и достоверного описания.
Систематизация областей предполагаемого спроса, прогнозируемого в определенных пространственных границах, с вероятными параметрами динамики и роста, представляет задачу маркетинговых исследований, завершающих этап конструкторских разработок. Возможности прогнозирования потенциальных состояний, возникающих в будущем результате событий настоящего времени, связываются с разработкой методов анализа устойчивости системы, закономерных и предопределенных характером изменений. 1
1 (Сапунов П. Основы прогнозирования: Инновационные процессы и устойчивость национальной экономики. —: Издательские решения, 2016, с. 48)
Данные такого анализа, фактически предполагают оценку системной значимости продуктивного решения, событие разработки которого предполагает дальнейшее использование для инновации в определенной отрасли производства, упорядоченной как система с исходными параметрами и размерными границами.
Исчисленный формально показатель пространственных границ инновационного потенциала является системным критерием реальной производственной и экономической ценности продуктивного решения, иллюстрирующим возможность потенциального распространения его метода – средства развития, дающего эффект толчка или всплеска инновационной активности рассматриваемой отрасли производства.
Новый технологический метод, разработанный как элемент – e1 решения элементарной системы – {Sn}, имеет потенциал линейного распространения в определенной области, представляющий по отношению к ней системную значимость – Zp.
Zp = Ze1/Z {Sn}{Sn} = {e1, e2, e3, … en}
где {Sn} – система задач решения;
en – элемент системы решения.
Конец ознакомительного фрагмента.