Шрифт:
Интервал:
Закладка:
Посмотрите на фрагмент молекулы ДНК, и вы увидите, что каждая молекула нуклеозида лишилась одного атома водорода фосфатной группы и одного атома водорода сахарного остатка.
Азотистое основание в нуклеозидах и нуклеотидах может быть связано с остатком одного из двух сахаров – рибозы или дезоксирибозы. Разница между двумя сахарами небольшая – всего в один атом кислорода. «Дезокси-» переводится с латыни как «отсутствие атома кислорода», то есть дезоксирибоза – это рибоза без одного атома кислорода. Все просто, верно?
Нуклеиновые кислоты имеют в составе своих молекул сахарные остатки, и потому в названии этой главы мы условно назвали их сладкими, хотя на самом деле они сладкого вкуса не имеют.
Вы, наверное, уже догадались, что молекула дезоксирибонуклеиновой кислоты состоит из остатков нуклеотидов, содержащих дезоксирибозу, а молекула рибонуклеиновой кислоты – из рибозных остатков. Да, так оно и есть. С химической точки зрения разница между ДНК и РНК заключена в наличии или отсутствии одного атома кислорода у нуклеотидного остатка.
С химией мы закончили, переходим к генетике.
С генетической точки зрения разница между ДНК и РНК огромна.
Молекула ДНК – хранитель наследственной информации и организатор ее передачи по назначению. Условно говоря – казначей. А молекула РНК в таком случае – помощник казначея.
ДНК включает в себя четыре вида азотистых оснований: аденин (A), гуанин (G), тимин (T) и цитозин (C). Всего четыре, но их комбинация дает невообразимое количество вариантов.
Вся информация о любом организме закодирована при помощи четырех «букв», четырех азотистых оснований – A, G, T и C. Лишь у некоторых организмов, в виде исключения, в составе ДНК может встречаться пятый тип азотистого основания – урацил (U). В человеческой ДНК урацила нет.
Комбинация из четырех элементов дает десять тысяч вариантов. Представили? А теперь давайте представим, что эти четырехэлементные комбинации еще и комбинируются друг с другом. При таком подходе количество вариантов уходит прямиком в бесконечность…
В молекулах ДНК зашифрована наследственная информация организма. Конкретного организма – гриба, растения, бактерии, лягушки, акулы, косули, тигра, медведя, человека… Все организмы на нашей планете разные (за исключением клонов, о которых мы поговорим позже), и ДНК у всех тоже разные. Двух полностью схожих молекул ДНК в природе не существует (за исключением ДНК тех же клонов). На этой индивидуальности и основана генетическая криминалистика и судебно-медицинская генетика – любого человека можно со стопроцентной точностью идентифицировать по его ДНК. Точно так же, как и по отпечаткам пальцев, но с отпечатками еще возможны оплошности, а вот с ДНК никаких оплошностей быть не может, это личный уникальный код организма.
Молекула ДНК не просто огромная, она гигантская, число нуклеотидов в ней может доходить до нескольких сотен миллионов. Природа стремится к некоторой компактности, поэтому гигантская молекула ДНК состоит не из одной, а из двух нуклеотидных цепочек, которые для пущей компактности еще и закручены вокруг своей оси в спираль. Получается этакая двойная пружина.
Цепочки устроены так, что остатки фосфорной кислоты и дезоксирибозы выполняют роль каркаса, похожего на перила винтовой лестницы, а нуклеотиды-«ступеньки» располагаются внутри и доступны для считывания. А как же без считывания? Последовательность нуклеотидных остатков – это код, а код должен быть читаемым.
Молекулы ДНК обладают способностью к репликации, то есть к самовоспроизведению. Без репликации никак не обойтись. Клетки размножаются делением, и каждая дочерняя клетка непременно должна получить от материнской полную копию наследственной информации. Чтобы передать ее своим потомкам…
Процесс репликации происходит очень интересно. По расплетенным цепочкам ДНК «ползут» два белковых комплекса, содержащие фермент[3] под названием «ДНК-полимераза», и делают копии. В ходе процесса образуются две дочерние молекулы ДНК. «Расплетение» двойной спирали для копирования обеспечивает особый фермент, который называется хеликазой. Хеликаза выполняет в процессе репликации роль ножниц.
(window.adrunTag = window.adrunTag || []).push({v: 1, el: 'adrun-4-390', c: 4, b: 390})Разумеется, никакое дело не обходится без ошибок. Во время репликации вместо нужного нуклеотида в цепочку может быть встроен другой, содержащий иное азотистое основание. В результате изменится наследственный код – вот вам пример изменчивости.
У эукариотов, живых организмов, клетки которых имеют ядро, репликация протекает со скоростью от 500 до 5000 нуклеотидных пар в минуту. А у прокариотов, клетки которых не имеют ядер, скорость репликации гораздо выше – около 100 000 пар в минуту. Мы с вами, как и большинство живых организмов на планете, относимся к эукариотам. Прокариотами являются некоторые одноклеточные организмы, например бактерии.
Почему такая разница в скорости? Дело в том, что у эукариотов ДНК содержится в ядрах, а у прокариотов находится в цитоплазме – полужидкой внутренней среде клетки. Проще говоря, в клетках-эукариотах ДНК хранится в «упакованном» виде, а у прокариотов в распакованном. Прокариотам, в отличие от эукариотов, не нужно тратить время на распаковку и упаковку молекул ДНК, а также на транспортировку материала внутрь ядра через ядерную мембрану, потому и репликация у них протекает гораздо быстрее.
В отличие от молекулы ДНК, молекула РНК короче (меньше) и состоит из одной цепочки. Вместо дезоксирибозных остатков в молекуле РНК содержатся рибозные, а еще в ней вместо тимина (Т) присутствует урацил (U).
Молекулы РНК синтезируются на матрицах – молекулах ДНК. Этот процесс называется транскрипцией. Транскрипция напоминает репликацию – по матрице (молекуле ДНК) ползет фермент РНК-полимераза и по считываемому коду синтезирует молекулу РНК.
Молекулы РНК, в свою очередь, служат матрицами для синтеза молекул различных белков. Этот процесс называется трансляцией.
Более подробно о транскрипции и трансляции мы поговорим в глава девятой, которая называется «Экспрессия – это транскрипция плюс трансляция».
У кого-то из читателей может возникнуть вопрос: зачем матушке-природе понадобилось городить такой вот огород, то есть сначала синтезировать РНК на матрице ДНК, а затем на матрице РНК синтезировать белковые молекулы? Зачем нужны посредники, ведь лучше, проще и удобнее обходиться без них? И процент ошибок будет ниже…
Не всегда лучше и проще. И уж тем более – не всегда удобнее. Молекула ДНК – слишком громоздкая матрица. Маленькие матрицы РНК гораздо удобнее для синтеза белковых молекул, и это удобство оправдывает затраты на их производство. Для сравнения можно привести следующий пример – площадь помещений удобнее измерять большой двадцатиметровой рулеткой, а при изготовлении полок или табуретов удобнее использовать маленькую, метровую.
Но РНК служат не только матрицами. Они входят в состав ряда ферментов и сами по себе тоже способны проявлять ферментативную активность, которая выражается в способности разрывать другие молекулы РНК или, напротив, склеивать их фрагменты. РНК, выступающие в роли самостоятельных ферментов, называются рибозимами.
Существует также транспортная РНК, которая переносит аминокислоты к месту синтеза белков. А малютка РНК-праймер, состоящая из 10 нуклеотидов (плюс минус один), выполняет очень важную функцию – запускает процесс репликации ДНК. Так и хочется сказать: «Мал золотник, да дорог».
Если молекулы РНК, служащие матрицей для синтеза белков, имеют вид одной длинной спирали, то все прочие, «нематричные» виды РНК, состоят из многочисленных коротких спиралей, образующих нечто вроде клубка.
У многих вирусов РНК играет роль ДНК, то есть является хранителем наследственной информации.
И раз уж зашла речь о вирусах, давайте рассмотрим их подробнее. Начиная с того, что они собой представляют и чем отличаются от других живых организмов. Это знание нам пригодится, когда мы станем говорить о генной инженерии, ведь вирусы являются инструментом для генного инженера.
- Генетика на пальцах - Шляхов Андрей - Учебная литература
- Обезьяны, кости и гены - Марков Александр Владимирович (биолог) - Учебная литература
- Спарта. Мир богов и героев - Савельев Андрей Антонович - Учебная литература