Читать интересную книгу Курс общей астрономии - неизвестен Автор

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 25 26 27 28 29 30 31 32 33 ... 109

§ 140. Малые планеты

1 января 1801 г. итальянский астроном Пиацци случайно, во время астрометрических наблюдений, обнаружил звездообразный объект, прямое восхождение и склонение которого, по дальнейшим наблюдениям, заметно изменялось от ночи к ночи. Гаусс вычислил его орбиту, и оказалось, что он движется вокруг Солнца по эллипсу, большая полуось которого равна 2,77 а.е., наклонение i = 10° и эксцентриситет е = 0,08. Стало ясно, что открыта планета, имеющая очень малые размеры. Ее назвали Церерой. Вскоре были найдены еще три такие планеты - Паллада, Веста и Юнона. В течение XIX в. количество планет-малюток постепенно увеличивалось. Их стали называть астероидами или малыми планетами. С конца XIX века для поисков малых планет начали применять фотографию. При длительных экспозициях изображение астероида вследствие изменения a и s получается в виде черточки, и его нетрудно отличить от звезд. В настоящее время известны орбиты 1800 астероидов. Самый яркий из них, Веста, представляет собой в противостоянии объект 6m,5; имеется несколько астероидов 7m-9m, все остальные - слабее. Статистика показывает, что малые планеты подчиняются определенному закону светимости: астероидов, имеющих звездную величину т, в 2,5 раза больше, чем астероидов со звездной величиной т - 1. Астероидам с хорошо определенной орбитой присвоены номера (в порядке открытия) и названия. Сначала использовались исключительно женские имена, заимствованные из мифологии, потом обычные женские имена, а позднее производные от имен известных ученых, стран и городов. Некоторым астероидам с необычной орбитой были даны мужские имена, взятые из мифологических источников. Только у четырех первых астероидов удалось прямыми измерениями определить диаметры. Самый большой оказался у Цереры (780 км), самый маленький у Юноны (200 км). Детали на дисках этих астероидов различить невозможно, но наблюдаются периодические колебания блеска и поляризации света, которые объясняются, по-видимому, вращением. В основном астероиды имеют диаметры от нескольких километров до нескольких десятков километров. Большинство малых планет движется на средних расстояниях от Солнца между 2,2 а.е. и 3,6 а.е., т.е. между орбитами Марса и Юпитера. Эта зона называется поясом астероидов. Эксцентриситеты орбит большинства астероидов (97%) меньше 0,3, а наклонения - меньше 16° (90%). Но есть планеты, орбиты которых выходят далеко за пределы пояса астероидов. Встречаются наклонения до 43° (Гидальго) и эксцентриситеты до 0,83 (Икар). Среди малых планет имеются семейства астероидов, орбиты которых близко подходят одна к другой. Две такие группы называются греками и троянцами: Ахилл, Патрокл, Гектор и др. (всего 15); 10 из них ("греки") движутся вокруг Солнца приблизительно по орбите Юпитера, на 60° по долготе впереди и пять ("троянцы") позади него, так что Солнце, Юпитер и эти группы астероидов образуют два равносторонних треугольника. Для этого частного случая задачи трех тел Лагранж нашел строгое решение (см. § 56), показав, что движение тел, находящихся вблизи таких точек, устойчиво по отношению к возмущающим влияниям больших планет. Количество астероидальных тел в межпланетном пространстве, по-видимому, очень велико, и мы наблюдаем только самые большие из них. Сталкиваясь между собой, такие тела дробятся и разрушаются, и в результате межпланетное пространство должно быть заполнено роем твердых обломков самых разнообразных размеров, от пылинок диаметром в доли микрона до размеров астероидов. Сталкиваясь с Землей, они выпадают на ее поверхность в виде метеоритов (см. § 143). Таким образом идет процесс, обратный дроблению, - захват крупными телами более мелких. Высказывалось предположение, что на ранних стадиях эволюции Солнечной системы плотность метеоритных тел в межпланетном пространстве была больше, и падения метеоритов играли существенную роль в формировании поверхности планет и спутников, в частности, Луны (см. гл. XIV). В ряде чисел, выражающих средние расстояния планет от Солнца, имеется некоторая закономерность, подмеченная еще в XVIII в. (правило Тициуса - Боде):

a = 0,1 × (3.2" + 4) а.е.(10.8)

где n = - ¥ для Меркурия, 0 для Венеры, 1 для Земли и т.д., а - среднее расстояние от Солнца в астрономических единицах. Табл. 8 позволяет сравнить расстояния, вычисленные по формуле (10.8), с истинными.

Из таблицы 8 видно, что средние расстояния планет вплоть до Урана удовлетворительно представляются формулой (10.8). Как раз в промежутке между Марсом и Юпитером, где должна была быть еще одна планета, находится пояс астероидов. По-видимому, в этой части Солнечной системы, которая разделяет планеты типа Земли и типа Юпитера, физические условия были таковы, что промежуточная планета не могла сформироваться или оказалась неустойчивой. Возможно, что на каком-то этапе эволюции Солнечной системы в поясе астероидов существовала одна или несколько крупных планет, но они были разрушены вследствие столкновений с другими телами или в результате действия какой-либо другой силы, например, приливного действия Юпитера. Физическая сущность приливного механизма разрушения состоит в том, что сила притяжения постороннего тела действует по-разному на различные части системы частиц, связанных между собой гравитацией, стремится их разделить и заставить каждую частицу двигаться по независимой орбите. Если это разделяющее действие окажется сильнее, чем притяжение между частицами, то система частиц (а ею может быть и твердое тело больших размеров, такое как планета) разрушится.

§ 141. Кометы

Большие кометы с хвостами, далеко простиравшимися по небу, наблюдались с древнейших времен. Некогда предполагалось, что кометы принадлежат к числу атмосферных явлений. Это заблуждение опроверг Браге, который обнаружил, что комета 1577 г. занимала одинаковое положение среди звезд при наблюдениях из различных пунктов и, следовательно, отстоит от нас дальше, чем Луна.

Движение комет по небу объяснил впервые Галлей (1705 г.), который нашел, что их орбиты близки к параболам. Он определил орбиты 24 ярких комет, причем оказалось, что кометы 1531, 1607 и 1682 гг. имеют очень сходные орбиты. Отсюда Галлей сделал вывод, что это одна и та же комета, которая движется вокруг Солнца по очень вытянутому эллипсу с периодом около 76 лет. Галлей предсказал, что в 1758 г. она должна появиться вновь, и в декабре 1758 г. она действительно была обнаружена. Сам Галлей не дожил до этого времени и не мог увидеть, как блестяще подтвердилось его предсказание. Эта комета (одна из самых ярких) была названа кометой Галлея (рис. 184). Поиски комет производились сначала визуально, а потом и по фотографиям, но открытия комет при визуальных наблюдениях совершаются нередко и сейчас. Кометы обозначаются по фамилиям лиц, их открывших. Кроме того, вновь открытой комете присваивается предварительное обозначение по году открытия с добавлением буквы, указывающей порядковый номер среди комет, найденных в данном году. Потом предварительное обозначение пересматривается, и буква заменяется римской цифрой, указывающей последовательность прохождения кометы через перигелий в данном году. Лишь небольшая часть комет, наблюдаемых ежегодно, принадлежит к числу периодических, т.е. известных но своим прежним появлениям. Большая часть комет движется по очень вытянутым эллипсам, почти параболам. Периоды обращения их точно не известны, но есть основания полагать, что они достигают многих миллионов лет. Такие кометы удаляются от Солнца на расстояния, сравнимые с межзвездными. Плоскости их почти параболических орбит не концентрируются к плоскости эклиптики и распределены в пространстве случайным образом. Прямое направление движения встречается так же часто, как и обратное. Периодические кометы движутся по менее вытянутым эллиптическим орбитам и имеют совсем иные характеристики. Из 40 комет, наблюдавшихся более чем один раз, 35 имеют орбиты, наклоненные меньше чем на 45° к плоскости эклиптики. Только комета Галлея имеет орбиту с наклонением, большим 90°, и, следовательно, движется в обратном направлении. Остальные движутся в прямом направлении. Среди короткопериодических (т.е. имеющих периоды 3-10 лет) комет выделяется "семейство Юпитера" - большая группа комет, афелии которых удалены от Солнца на такое же расстояние, как орбита Юпитера.. Предполагается, что семейство Юпитера образовалось в результате захвата планетой комет, которые двигались ранее по более вытянутым орбитам. В зависимости от взаимного расположения Юпитера и кометы эксцентриситет кометной орбиты может как возрастать, так и уменьшаться. В первом случае происходит увеличение периода или даже переход на гиперболическую орбиту и потеря кометы Солнечной системой, во втором - уменьшение периода. Орбиты периодических комет подвержены очень заметным изменениям. Иногда комета проходит вблизи Земли несколько раз, а потом притяжением планет-гигантов отбрасывается на более удаленную орбиту и становится ненаблюдаемой. В других случаях, наоборот, комета, ранее никогда не наблюдавшаяся, становится видимой из-за того, что она прошла вблизи Юпитера или Сатурна и резко изменила орбиту. Кроме подобных резких изменений, известных лишь для ограниченного числа объектов, орбиты всех комет испытывают постепенные изменения. Изменения орбит не являются единственной возможной причиной исчезновения комет. Достоверно установлено, что кометы быстро разрушаются. Яркость короткопериодических комет ослабевает со временем, а в некоторых случаях процесс разрушения наблюдался почти непосредственно. Классическим примером является комета Биэлы. Она была открыта в 1772 г. и наблюдалась в 1815, 1826 и 1832 гг. В 1845 г. размеры кометы оказались увеличенными, а в январе 1846 г. наблюдатели с удивлением обнаружили две очень близкие кометы вместо одной. Были вычислены относительные движения обеих комет, и оказалось, что комета Биэлы разделилась на две еще около года назад, но вначале компоненты проектировались один на другой, и разделение было замечено не сразу. Комета Биэлы наблюдалась еще один раз, причем один компонент был много слабее другого, и больше ее найти не удалось. Зато неоднократно наблюдался метеорный поток, орбита которого совпадала с орбитой кометы Биэлы. Когда комета приближается к Солнцу, она испытывает целый ряд изменений. Возрастает ее яркость, увеличивается размер хвоста, иногда наблюдаются быстрые изменения структуры. Хвост кометы обычно имеет вид конуса, в вершине которого находится размытое пятно (голова). Голова состоит из туманной оболочки (комы) и звездообразного ядра, которое является самой яркой точкой кометы. Яркость комы возрастает по направлению к ядру. Головы комет могут иметь очень большие размеры - несколько десятков и даже сотен тысяч километров. Хвост кометы всегда направлен от Солнца. Когда расстояние от Солнца велико, хвост отсутствует или очень мал, хорошо видна только кома. Быстрое развитие хвоста кометы начинается при сближении ее с Солнцем, примерно до 1 а.е. В это время обычно хвост растет с огромной скоростью, около 106 км в сутки, пока не достигнет величины около 108 км. Силы, отталкивающие кометный хвост от Солнца, - это световое давление и корпускулярные потоки. Корпускулярные потоки несут с собой магнитное поле, и так как ионы не могут двигаться поперек силовых линий, то через это поле передают давление на ионизованный газ в кометных хвостах. Скорость движения вещества в хвостах может быть измерена в тех случаях, когда в них заметны какие-либо конденсации в виде узелков или небольших облачков. В некоторых случаях эти скорости очень велики и отталкивающие силы в 103 раз превосходят действие солнечной гравитации. Однако чаще всего различие не превосходит нескольких раз. Согласно Ф.А. Бредихину, принято различать три типа кометных хвостов (рис. 185): хвосты I типа, в которых отталкивающие силы в 10-100 раз больше сил притяжения и которые поэтому направлены почти точно от Солнца; хвосты II типа, заметно изогнутые, в которых отталкивающие силы несколько больше сил притяжения, и хвосты III типа, сильно изогнутые, в которых отталкивающие силы несколько меньше сил притяжения.

1 ... 25 26 27 28 29 30 31 32 33 ... 109
На этом сайте Вы можете читать книги онлайн бесплатно русская версия Курс общей астрономии - неизвестен Автор.
Книги, аналогичгные Курс общей астрономии - неизвестен Автор

Оставить комментарий