минус на минус даёт плюс.
Он отошёл, уступив место Тане.
Она возвела в квадрат минус три. Получилось плюс девять. Гирька подскочила и загорелся зелёный огонёк. Потом Таня возвела минус три в третью степень Получилось минус двадцать семь. Гирька ушла в колодец, и там снова вспыхнула зелёная лампочка.
— Дай-ка мне!
Я взял у Тани молоток и стал возводить минус три в четвёртую степень, пятую, шестую, седьмую…
Гирька по очереди то подпрыгивала всё выше и выше, то уходила всё глубже в колодец. И каждый раз загорался зелёный огонёк. Тут-то я и понял, что, когда отрицательное число возводишь в чётную степень, ответ получается положительный, а когда в нечётную — отрицательный. Хочешь знать почему? Возьми карандаш и разберись сам.
Наконец мы решили, что достаточно углубили свои знания в колодце, и отправились дальше.
По дороге нам повстречалась старая знакомая — та самая Мнимая Единичка, которая опрашивала у Автомата, найдётся ли ей место в жизни. Мы её сразу узнали по маленькому красному зонтику.
— Здравствуйте, как поживаете?
— Отлично, — ответила она. — Автомат сказал правду: и Мнимая Единица может на что-нибудь пригодиться.
— Неужели вы нашли себе место на воздушной монорельсовой дороге?
— Конечно, но не на той ветке, где живут действительные числа. У нас, Мнимых Единиц, собственная дорога. Она пересекает воздушную монорельсовую как раз на Нулевой станции.
— Как же мы её не заметили? — спросил Сева.
— Так ведь наша дорога мнимая и не сразу бросается в глаза.
— Жаль, что не сразу! — сердито отрезал Сева. — Теперь придётся возвращаться, чтобы посмотреть на неё.
— Возвращаться к старому иногда полезно, — заметила Мнимая Единичка. — Но с небольшим кусочком мнимой дороги вы можете познакомиться и здесь. В парке построен новый аттракцион. Он называется «Мнимая карусель». Я там работаю. Хотите взглянуть?
Хотим ли мы взглянуть на карусель, да ещё мнимую? Как ты думаешь?
Олег.
Мнимая карусель
(Таня — Нулику)
Вот тебе, Нулик, наши последние новости.
По дороге к аттракциону всё чаще мелькали рекламные плакаты:
ПЕРВАЯ В МИРЕ МНИМАЯ КАРУСЕЛЬ!
Исключительно для Мнимых Единиц!
ЕДИНСТВЕННОЕ МЕСТО, ГДЕ МНИМЫЕ ЕДИНИЦЫ
МОГУТ СТАТЬ ДЕЙСТВИТЕЛЬНЫМИ!
Мнимые Единицы, кружитесь на здоровье!
Наша симпатичная подружка щебетала без умолку и рассказала кучу интересного.
Оказывается, Мнимая Единица — это просто-напросто корень квадратный из отрицательной единицы:
√-1
— А разве из минус единицы нельзя извлечь корень? — спросил Сева. — Ведь корень квадратный из единицы всегда равен единице.
— Ой-ой-ой! — ужаснулась Мнимая Единичка. — Это касается только положительной единицы. Ведь что значит извлечь корень квадратный, скажем, из девяти?
— Это значит найти такое число, которое при возведении в квадрат равнялось бы девяти, — ответил Олег. — Это число три.
— Верно. А теперь попробуйте найти число, которое при возведении в квадрат даёт минус единицу!
Мнимая Единичка тоненько засмеялась.
Сева озадаченно взъерошил волосы:
— М-да! Такого числа нет. Какое число ни возводи в квадрат, положительное или отрицательное, ответ всё равно получится положительный. Уж я-то знаю!
— Вот видите. Потому-то корень квадратный из минус единицы называется мнимой единицей.
— Выходит, мнимые единицы совсем особые числа. Наверное, и дорога у вас устроена как-нибудь особенно.
— Ничуть. Наша дорога очень похожа на ту, где живут действительные числа, только расположена она под прямым углом к ней. Это такая же бесконечная прямая, в центре которой находится всё та же Нулевая станция.
— Раз у вас есть Нулевая станция, значит, есть положительные и отрицательные числа?
— Что вы! Разве мнимые числа могут быть положительными и отрицательными? Просто на нашей дороге, так же как и на дороге действительных чисел, есть два направления от нуля. Одно из них условились обозначать знаком плюс, другое — знаком минус.
— Но как же мнимые числа отличают от действительных?
— С помощью буквы i:
2i, 5i, -8i, -12i.
— Вот как! У вас, как и у других букв в Аль-Джебре, тоже есть коэффициенты?
— Конечно.
— А где же ваш коэффициент? — ляпнул Сева.
И когда только он научится вести себя в обществе? Хорошо ещё, воспитанная Единичка сделала вид, что не заметила его бестактности.
— Мой коэффициент — единица, и он, как всегда, невидимка.
Но Сева уже закусил удила. Ужасный он спорщик!
— Вот вы говорите, что мнимая монорельсовая дорога похожа на действительную. Значит, и правила движения на ней те же. Так ведь? Тогда при чём здесь карусель? Ведь на обычной монорельсовой дороге движение идёт по прямой, а карусель-то кружится?
— Вы отчасти правы, — ответила Мнимая Единичка. — Правила движения у нас более разнообразны. При сложении и вычитании вагончики на мнимой дороге движутся по прямой и по тем же правилам, что и действительные числа.
2i + 3i = 5i;
8i — 15i = -7i,
или вот ещё:
-3i + 9i = 6i,
ну и конечно:
5i — 5i = 0.
Мнимые Единички с разными знаками и одинаковыми коэффициентами взаимоуничтожаются на Нулевой станции.
Иное дело — умножение, деление, возведение в степень… Тут уж Мнимые Единицы двигаются не только по прямой, но и по кривой. Именно это вы сейчас и увидите.
Мы вошли в круглый павильон. Там было полным-полно Мнимых Единиц. Все они с нетерпением ждали своей очереди покружиться.
Павильон очень похож на цирк. Места расположены амфитеатром. В центре — арена, её под прямым углом друг к другу пересекают две перекладины. Одна перекладина изображает монорельсовую дорогу действительных чисел. На концах её укреплены таблички +1 и -1. Другая перекладина изображает дорогу мнимых чисел. Здесь на концах находятся таблички +i и -i. На пересечении дорог, в центре арены, — Нулевая станция. Здесь укреплена вращающаяся ось, и на неё (совсем как патефонная пластинка) надет прозрачный пластмассовый круг.
Когда мы вошли, карусель только что остановилась. С неё легко соскочила Мнимая Единица с зелёным зонтиком. Вместо неё на круг против таблички +i стала Мнимая Единица с желтым зонтиком.
Наша спутница подошла к микрофону и скомандовала:
— К возведению в степень приготовиться!
Прозвенел звонок, и