Шрифт:
Интервал:
Закладка:
Конечно, инфляция не может продолжаться бесконечно долго: все длилось кратчайшие доли секунды, но в них уложились события огромного для Вселенной значения. Вот точные данные, которые не могут не казаться совершенно фантастическими. За время 10-30 секунды из точечной области размером меньше 10-33 сантиметра (!) возникли просторы протяженностью в 10 миллиардов световых лет (1028 сантиметров)!! И все вещество, содержащееся внутри наблюдаемой части нашей Вселенной (1045 тонн), возникло из крохи, имеющей не более чем 10-5 грамма вещества!!! Противоречия с законом сохранения энергии? Их нет. Все явилось результатом огромной работы, которую совершили гравитационные силы во время раздувания Вселенной.
После завершения этого процесса Вселенная разбилась на большое количество областей. В каждой из них свойства элементарных частиц и законы их взаимодействия друг с другом различны (наш счастливый жребий!). Этих областей мы не видим, так как размеры каждой (в том числе и той, где мы живем) во много раз превышают размеры наблюдаемой нами части Вселенной…
Наша беседа с А. Линде продолжается. То, о чем рассказывает Андрей, очень непросто, и я тут вовсе не пытаюсь притворяться шибко понимающим. Я возбужден не только тем, что воочию вижу, как на листе бумаги под быстрым карандашом А. Линде извивается и трепещет «траектория» эволюционирующей во времени Вселенной. Не только тем, что нити микромира и макромира оказались завязанными в одном хитро запутанном клубке. Больше всего, пожалуй, меня будоражит сидящий против меня за столом Андрей: он сам представляется мне огромной нерешенной загадкой.
Я думаю о необычности его профессии — профессии физика-теоретика, — об исследователях, поневоле вынужденных работать в одиночку («мы одиночки», несколько раз повторял он) годами — среди библиотечных полок, с редкими вылазками на семинары, где можно выслушать приговор коллег, — вынашивающих свои мысли («Месяц читаю одни детективы, — признался Андрей, — у меня сейчас творческий тупик»). Думаю и о том, как же ему все-таки удается (какие тут особые приемы, подходы, правила научной «игры») держать Вселенную на кончике пера.
Я соприкоснулся с большой (и профессиональной и личной) тайной, и это взволновало меня. Как вообще может крошка человек, плывущий в головокружительных просторах космоса на небольшом суденышке — Земле, вращающейся вокруг одной из миллиардов звезд, как может человек, заключенный в этой мельчайшей частичке Вселенной, изучать всю ее остальную бескрайнюю часть?
Догадываться о ее прошлом и будущем? И не просто догадываться, но творить твердое знание? И даже замахиваться — сколько научной смелости тут требуется! — на то, чтобы в конце концов объяснить, откуда же берутся эти вселенные?
Нечто по имени Ничто
В нашей беседе с А. Линде очень часто и так ж эдак мелькало, уходило и возвращалось все вновь и вновь одно и то же слово. Как жужжащий шмель, оно то влетало, то вылетало из нашего разговора. Как необходимая приправа, без которой пища не пища, оно имело самое непосредственное отношение к теме, слово это было — вакуум.
Пустоту, мы помним, в науку ввел Демокрит. Его атомы разделены пустотой. И нож, по мнению Демокрита, режет хлеб только потому, что идет через пустое пространство.
Умозрительные (чисто философские) рассуждения Демокрита постепенно обрастали подробностями. Аристотель отрицал пустоту, но она тревожила его воображение, пройти мимо этого понятия крупнейший энциклопедист древности никак не мог. Он писал: «Надо признать, что дело физика — рассмотреть вопрос о пустоте, существует она или пет и в каком виде существует или что она такое…»
За признание пустоты в физике (о, эта интуиция великих умов!) боролся французский философ и математик Р. Декарт (1596–1650). Вот его слова: «Все пространства, которые обычно считают пустыми и в которых не чувствуется ничего, кроме воздуха, на самом деле так же наполнены, и притом той же самой материей, как и те пространства, где мы чувствуем другие тела…»
Этот перечень цитат, где прозревается грядущее научное и практическое значение вакуума, можно было бы легко продолжить, сославшись на Б. Паскаля, И. Ньютона, Д. Менделеева и других ученых.
Да, предсказывая вакууму большое будущее, корифеи науки не заблуждались: вакуум становится сейчас непосредственным объектом многих исследований физиков во всех концах мира. (Не теряют времени и популяризаторы науки: в нашей стране уже появилась книжка с названием «Нечто по имени Ничто». Правда, смысл этого заголовка — но таков уж вакуум! — мало изменится, если поменять местами слова Нечто и Ничто.)
Отчего же это Ничто, это вроде бы полное отсутствие чего бы то ни было, стало таким наполненным и полновесным? Да потому, что вакуум (чаще для солидности теперь говорят о «физическом вакууме») предстал перед учеными отнюдь не пустым.
А. Линде: «Вакуум — это то, что лишь выглядит как пустота. Под микроскопом, если выражаться фигурально, он буквально кипит, выбрызгивая элементарные частицы…»
Действительно, физический вакуум заполнен частицами особого рода, исчезающими сразу же после своего рождения. Одновременно существующими и нет, воистину эфемерными.
Такие почти-частицы в физике носят название виртуальных. Их вроде бы невозможно зафиксировать. Но — опять парадокс! — эти призраки микромира, почти фантомы, тем не менее могут взаимодействовать с частицами реальными, настоящими, влиять на их поведение.
Вот оно, «окошко» в вакуум, в это загадочное и, казалось бы, неуловимое Нечто.
В последние годы очень много внимания вакууму уделяет паш ведущий космолог академик Я. Зельдович. Совсем недавно торжественно отмечался его 70-летний юбилей (родился в 1914 году). Однако этот ученый (трижды Герой Социалистического Труда) полон неиссякаемой творческой энергии и в силе и быстроте мышления не уступает молодым физикам-теоретикам. (Считается, что карьера физика-теоретика, как и звезды балета — хотя для балерины, может быть, мускулы ног важней нейронов головы! — заканчивается к 30 годам: он-де «сжигает» свои лучшие мозговые клетки. Я. Зельдович своим примером опровергает это, конечно же, вздорное мнение.)
Я. Зельдович много пишет о вакууме, и тон его выступлений становится все более уверенным. Вначале он только ставил вопросы (одна из его статей в журнале «Успехи физических паук» называлась «Теория вакуума, быть может, решает загадку космологии», 1981 год), но теперь уже почти не сомневается, что в вакуумном океане рождаются ке только элементарные частицы — эти крохотные островки среди бушующих стихий, — но и целыа материки вселенные.
Что же все-таки было в момент команды «старт»?
Я. Зельдович верит: развитие теории квантовой гравитации приведет к возможности квантового флуктуационного рождения Вселенной, ее создания из вакуума. «Вещество Вселенной родилось из ничего, — повторяет он и тут же спешит добавить: — И это не противоречит физическим законам».
…Вселенная тогда клокотала, как кипящий чайник
Мы продолжаем разговор о Вакууме (это слово, как и слово Вселенная, давно уже следует писать с большой буквы), Вакууме, который не следует путать с пустотой.
Д. Киржниц (родился в 1926 году), физик-теоретик, доктор физико-математических наук, профессор, заведующий сектором теории сверхпроводимости в ФИАНе, после окончания физфака МГУ в 1949-м несколько лет работал в промышленности. На заводе, когда Д. Киржниц определялся на работу, расспросив молодого человека и узнав, что он занимался поляризацией вакуума, в отделе кадров рассудили просто: решили дать ему в руки кисточку и определить к вакуумным приборам замазывать трещинки…
В судьбе теоретика всякое бывает! Но именно Д. Киржниц первым высказал оригинальную мысль о том, что физический вакуум может проявлять свойства сверхпроводимости. Вместе с А. Линде (1972) он показал, что система уравнений, описывающих сверхпроводимость в металле, практически неотличима от системы уравнений, характеризующих вакуум. Что при определенных обстоятельствах вакуум может резко изменять свои свойства, испытывать фазовые переходы. За это позднее исследователи и были удостоены Ломоносовской премии.
Сверхпроводимость, это необычное свойство проводника вовсе не оказывать сопротивления электрическому току, — явление уникальное. Однако вакуум тут выказывает еще более поразительные качества: он, оказывается, изолятор для токов электромагнитных и сверхпроводник для токов слабого взаимодействия. Так сказать, един в двух лицах!
Сверхпроводимость характеризуется критической температурой. Выше этой точки сверхпроводимость исчезает, внутреннее состояние проводника перестает быть упорядоченным (в вакууме, как оказалось, виртуальные частицы тоже отнюдь не находятся в состоянии хаоса). Так вот, для металлов критическая температура не превышает что-то около 25 градусов выше абсолютного нуля (шкала Кельвина). А в вакууме — он и тут ставит рекорд критическая температура, как показали расчеты, равна 1016 градусов!
- Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт. - Jaume Navarro - Научпоп
- Что вы знаете о своей наследственности? - Николай Тарасенко - Научпоп
- Женщины-воины: от амазонок до куноити - Олег Ивик - Научпоп
- Мэрилин Монро. Жизнь и смерть секс-символа Америки - Софья Аннина - Научпоп
- Как Париж стал Парижем. История создания самого притягательного города в мире - Дежан Джоан - Научпоп