Читать интересную книгу Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории - Грин Брайан

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 22 23 24 25 26 27 28 29 30 ... 120

Квантовая теория

Квантовая механика представляет собой систему понятий, предназначенную для понимания свойств микромира. Точно так же, как специальная и общая теории относительности потребовали решительного пересмотра нашего взгляда на мир для случая объектов, которые движутся очень быстро или имеют очень большую массу, квантовая механика установила, что наша Вселенная имеет такие же, если не ещё более поразительные свойства, если исследовать её в масштабе атомных и субатомных расстояний. В 1965 г. Ричард Фейнман, один из величайших специалистов в области квантовой механики, писал: «Было время, когда газеты сообщали, что только двенадцать человек понимают теорию относительности. Я не верю, что такое время когда-либо было. Могло быть время, когда её понимал только один человек, тот самый парень, который схватил её суть перед тем, как написать свою статью. Но после того как люди прочитали его статью, масса людей стала так или иначе понимать теорию относительности, и уж точно число этих людей превышало двенадцать. С другой стороны, я думаю, что могу совершенно спокойно сказать, что квантовую механику не понимает никто». {24}

Хотя Фейнман высказал свою точку зрения более тридцати лет назад, она остаётся справедливой и сегодня. Он имел в виду следующее: хотя специальная и общая теории относительности потребовали волнующего пересмотра нашего видения мира, после того, как вы полностью примете лежащие в их основе фундаментальные принципы, все новые и необычные следствия этих теорий для пространства и времени могут быть получены непосредственно путём логических рассуждений. Если вы достаточно интенсивно поработаете над выводами Эйнштейна, приведёнными в предыдущих двух главах, вы сможете хотя бы на короткое время понять неизбежность сделанных им заключений. Не так обстоит дело с квантовой механикой. Примерно к 1928 г. уже было установлено множество математических формул и законов квантовой механики. Затем с их помощью неоднократно делались самые точные и успешные в истории науки количественные предсказания. Однако на самом деле те, кто использует квантовую механику, просто следуют формулам и правилам, установленным «отцами-основателями» теории, и чётким и недвусмысленным вычислительным процедурам, но без реального понимания того, почемуэти процедуры работают, или чтоони в действительности означают. В отличие от теории относительности едва ли найдётся много людей, если такие найдутся вообще, кто смог понять квантовую механику на «интуитивном» уровне.

Что же нам предпринять в такой ситуации? Означает ли это, что в масштабах микромира Вселенная функционирует столь непонятным и непривычным образом, что человеческое мышление, привыкшее в течение тысячелетий иметь дело с явлениями, протекающими в обычном, макроскопическом масштабе, неспособно до конца понять то, «что происходит в действительности»? Или, быть может, по какой-то исторической случайности, физики создали чрезвычайно уродливую формулировку квантовой механики, которая оказалась успешной с точки зрения количественных предсказаний, но маскирует истинную сущность природы? Этого не знает никто. Может быть, когда-нибудь в будущем появится более талантливый исследователь, который предложит новую формулировку, ясно отвечающую на все «почему» и «как» квантовой механики. А может и не появится. Единственное, что мы знаем наверняка, это то, что квантовая механика совершенно ясно и недвусмысленно показывает, что ряд фундаментальных концепций, имеющих существенное значение для понимания того мира, с которым мы сталкиваемся в повседневной жизни, полностью теряет всякий смыслпри переходе к микромиру. В результате, пытаясь понять и объяснить Вселенную на атомном и субатомном уровнях, мы должны кардинально менять наш язык и логику рассуждений.

В последующих разделах мы рассмотрим основы этого языка и опишем ряд удивительных результатов, к которым ведёт его применение. Если по ходу изложения квантовая механика покажется вам в целом странной и нелепой, вы должны вспомнить о двух вещах. Во-первых, помимо того, что это математически корректная теория, единственная причина, по которой мы доверяем квантовой механике, состоит в том, что её предсказания подтверждаются с поразительной точностью. Если кто-то сможет рассказать вам со всеми мучительными подробностями массу самых сокровенных историй из вашего детства, трудно будет не поверить, что это ваш давно пропавший брат (или сестра). Во-вторых, вы не одиноки в такой реакции на квантовую механику. Сходной точки зрения придерживалось, в большей или меньшей степени, немало уважаемых физиков. Эйнштейн отказывался признать квантовую механику. И даже Нильс Бор, один из первооткрывателей квантовой механики, однажды заметил, что если вы никогда не чувствуете себя ошеломлённым, когда размышляете о квантовой механике, значит, вы не понимаете её по-настоящему.

На кухне слишком жарко

Путь к квантовой механике начался с одной сбивающей с толку проблемы. Представьте, что стоящая у вас в доме духовка имеет идеальную изоляцию, что вы установили её на некоторую температуру, скажем, 200° C, и что у вас достаточно времени, чтобы подождать, пока она нагреется. Даже если перед включением духовки вы откачаете из неё весь воздух, она будет излучать волны в результате нагрева стенок. Это тот же вид излучения (теплота и свет являются разновидностями электромагнитных волн), что и излучение поверхности Солнца или раскалённой докрасна железной кочерги.

Проблема состоит в следующем. Электромагнитные волны переносят энергию. Например, жизнь на Земле критически зависит от солнечной энергии, переносимой с Солнца на Землю электромагнитными волнами. В начале XX столетия физики рассчитали общее количество энергии электромагнитного излучения замкнутой полости, находящейся при заданной температуре. Используя хорошо известные методы расчёта, они получили нелепый ответ: при любой заданной температуре общая энергия оказывалась бесконечной.

Всем было ясно, что это нонсенс — духовка может дать значительное количество энергии, но уж точно не бесконечное. Для того чтобы понять решение, предложенное Планком, стоит рассмотреть проблему более детально. Оказалось, что когда электромагнитная теория Максвелла применяется для расчёта излучения духовки, она показывает, что волны, генерируемые стенками, должны быть такими, чтобы между противоположными стенками укладывалось целоечисло максимумов и минимумов. Несколько примеров показано на рис. 4.1. Физики используют для описания таких волн три понятия: длина волны, частота и амплитуда. Длина волны, как показано на рис. 4.2, представляет собой расстояние между соседними максимумами или минимумами волны. Чем больше максимумов и минимумов, тем короче длина волны, так как все они должны уместиться между неподвижными стенками печи. Частотаобозначает число циклов колебаний вверх-вниз, которые волна совершает в течение одной секунды. Частота и длина волны являются взаимосвязанными параметрами: чем больше длина волны, тем меньше частота; чем меньше длина волны, тем больше частота. Чтобы понять, почему это так, представьте себе, что вы создаёте волны, раскачивая один конец длинного каната, другой конец которого привязан к стенке. Для того чтобы получить волну с большой длиной волны, вы лениво помахиваете концом каната вверх и вниз. Частота волн равна числу движений вашей руки за секунду и, следовательно, является очень небольшой. Чтобы генерировать более короткую волну, вам придётся трясти ваш конец более интенсивно, более часто: это даст волну более высокой частоты. Наконец, физики используют термин амплитудадля описания максимальной высоты или глубины волны (см. рис. 4.2).

Рис. 4.1.Теория Максвелла говорит нам, что волны излучения в духовке имеют целое число максимумов и минимумов — они совершают полные циклы колебаний

1 ... 22 23 24 25 26 27 28 29 30 ... 120
На этом сайте Вы можете читать книги онлайн бесплатно русская версия Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории - Грин Брайан.

Оставить комментарий