Шрифт:
Интервал:
Закладка:
Недопустимо и непростительно! Но мы предложим всё-таки не выстраданные эмпирически простейшие приёмы, а ещё более фундаментальные правила (то есть симметрии и их преобразования), и такие, что их можно, как в математике, вывести одно из другого.
«С самого начала разработки ТРИЗ было ясно — необходимо иметь мощный информационный фонд, включающий прежде всего типовые приемы устранения технических противоречий. Работа по его созданию велась много лет: было проанализировано свыше 40 000 изобретений, выявлено 40 типовых приемов (вместе с подприемами — более 100)…» (Альтшуллер, 1988, С.165).
Впечатляющая статистика! Достойна большого уважения многолетняя кропотливая работа по анализу имеющихся изобретений, но не видите ли вы противоречия в первой и второй цитатах одного и того же автора? Так ли уж необходимы нам в качестве примеров и образцов тысячи и тысячи изобретений, чтобы иметь цельное представление о реальности? Не являются ли они модификациями и частностями гораздо меньшего числа исходных изобретений — прототипов?
Г.Я. Буш, в свою очередь, ввёл собственную классификацию эвристических методов технического творчества, признавая её неполноту: методы аналогии (22 шт.), методы инверсии (23 шт.), методы комплекса (30 шт.), методы расчленения и редукции, методы комбинирования — всего более 100 с лишним приемов, разбитых на эти пять подгрупп. Генрих Буш указывал, что «каждый из эвристических методов имеет свои сильные и слабые стороны, границы применяемости, разновидности, вариации, приемы» (Буш, 1972). Так попробуйте запомнить их все или хотя бы многие!
Надо ли видеть море, чтобы убедиться в его существовании, или по капле дождя можно сделать умозаключение о том, что моря есть?!
Создатель ТРИЗ отмечал: «Перечень типовых приемов — это своего рода настольный справочник изобретателя, но справочник особого рода: изобретатель должен рассматривать его как основу, которую необходимо самостоятельно пополнять по новым техническим и патентным публикациям» (Альтшуллер, 1973).
Да, конечно, тренированный инженер, специализирующийся в этой области, удержит в памяти и эти принципы, и все подпринципы, и даже сумеет перебрать их подряд, согласно присвоенным порядковым номерам. А можно не удерживать, но выводить при необходимости, как это делается в той же математике, сложные приёмы из простых, а простые — из фундаментальных!?
«В глубине технических противоречий — противоречия физические, — отмечал Генрих Саулович Альтшуллер. — По самой своей сути физические противоречия (ФП) предъявляют двойственные требования к объекту: быть подвижным и неподвижным, горячим и холодным и т. п. Неудивительно, что изучение приемов устранения ФП привело к выводу, что должны существовать парные (двойственные) приемы, более сильные, чем одинарные. Информационный фонд ТРИЗ пополнился списком парных приемов (дробление — объединение и т. д.).
В дальнейшем выяснилось, что решение сложных задач обычно связано с применением комплексных приемов, включающих несколько обычных (в том числе и парных) приемов и физические эффекты. Наконец, были выделены особо сильные сочетания приемов и физэффектов — они и составили первую, еще немногочисленную группу стандартов на решение изобретательских задач.
Первые стандарты были найдены эмпирически: некоторые сочетания приемов и физэффектов встречались в практике столь часто и давали решения столь сильные, что сама собой напрашивалась мысль о превращении их в стандарты.
Итак, стандарты — это правила синтеза и преобразования технических систем, непосредственно вытекающие из законов развития этих систем…» (Альтшуллер, 1988, С. 165–230)
Кстати, если уж зашла речь, небольшой пример из архива Н.Н. Латыпова, пример синтеза двух изобретательских приёмов, пример самого настоящего синергетического эффекта.
— Чтобы потушить большой пожар, нужны очень мощные средства. Его дробят взрывами на мелкие очаги, предотвращая приток горючего. Его накрывают пенным слоем, изолируя от кислорода. И всё это сложно и не всегда надёжно. Как-то я задумался, — вспоминает Нурали Латыпов в одной из статей газеты «Трибуна», — а нельзя ли использовать два в одном? И предложил бомбить такие пожары большими блоками твёрдой углекислоты. Она мгновенно испаряется, порождая ударную (в то же время ещё и холодную) волну и сбивая ею пламя, тут же окутывает очаг пожара углекислотным облаком. Правда, твёрдая углекислота — с температурой -78° C — очень быстро испаряется. Её не запасёшь на пожарных складах впрок. Но практически любой производитель мороженого располагает мощностями для производства сухого льда. Его куски кладут в ящики с мороженым, чтобы оно при перевозке и продаже не успело растаять. Так что пожарным есть где получить столько «бомб», сколько понадобится для уничтожения любого пожара (Вассерман, Латыпов, 2012, С. 311–313).
Удельный вес сухого льда всего лишь в полтора раза превышает удельный вес воды, тонны жидкости, выливаемые непрерывно на лесные пожары не обладают той прицельностью действия, с каковой можно было бы метать «бомбы» дискретного сухого льда (например, с полиэтилетовой оболочкой).
Игорь Серафимович Иванов, автор исследований изобретательских процессов, объединивший их под звучным названием «Инвентология» выделял сперва 50 типовых способов изобретательства (Иванов, 2001), десять лет спустя он удвоил число опубликованных инвентологических принципов (Иванов, 2010). Причём, по словам автора этой системы, резервы на том не исчерпаны — курс инвентологии подразумевает не менее 250 изобретательских принципов (там же, С. 280–283), а их гибридизация порождает ещё большее число приёмов.
Уильям Оккам, как и Роджер Бэкон — монах-францисканец, где-то на рубеже XIII–XIV веков прославился таким афоризмом: «Сущности не следует умножать без необходимости», или же дословно — frustra fit plura, quod fieri potest pauciora («незачем делать посредством многого то, что можно сделать посредством немногого»).
Думаем, что сколь многообразна человеческая речь, столь же многообразны способы и приёмы творить, делать открытия и изобретения. Способы эти оказываются на проверку симметриями, и порождение всё новых и новых частных изобретательских приёмов из более общих — естественный ход нарушения (или преобразования) исходных симметрий.
Отдавая должное высоким прикладным качествам ТРИЗ и Инвентологии, пойдём другим путём. Попытаемся зреть в корень! То есть обратимся к главному физическому противоречию, главному противоречию существующего миропорядка вообще, поскольку именно оно отражается на всех уровнях движения и развития, в том числе биологических, социальных и технических систем, к вроде бы ещё непонятному для читателя универсальному закону.
Профессор Н.П. Абовский обращает наше внимание на сравнительно давнюю, но концентрированно выраженную мысль: «Хотя естествознание составляет важнейшее средство инженерной деятельности, а знание его проблемы имеет неоценимое значение для инженера, но он не может удовлетвориться только естественнонаучным знанием… Открытие естественного процесса не может получать немедленное применение. Для этого неминуемо приходится решать целый ряд задач, неизвестных естествоиспытателю. Если непосредственной целью естествознания является познание истины, раскрытия законов природы, то непосредственной целью технических наук является содействие человеку в практическом использовании этих законов, выяснение и обоснование их применения. Методологическое единство естествознания состоит в том, что как в природе, так и в технике люди имеют дело с единой материей, существующей и развивающейся по единым законам. Отсюда следует, что универсальные диалектико-материалистические принципы познания не могут не быть общими как для природы, так и техники» (Белозерцев, 1980).
Начала универсального языка-транслятора Диал
Знаменитый физик Поль Дирак всегда требовал точности и корректности в выражениях. Однажды после лекции он обратился к студентам: «Вопросы есть?» С места кто-то робко произнес: «Я не понимаю, как вы получили это уравнение». «Это утверждение, а не вопрос, — отрезал Дирак. — Я спрашиваю — вопросы есть?»
Уместно вспомнить тут античного ритора (то есть учителя красноречия) Марка Фабия Квинтилиана (ок 35 — ок 96 г. н. э) и его «контрольные вопросы»: «Quis? Quid? Ubi? Quo? Cur? Quomodo? Quando?» То есть «Кто действует, каков субъект? Что подвергается воздействию, каков объект? Где происходит действие, каково место? Чем определяется действие, средства? Зачем оно совершается, какая цель? Каков метод действия? Когда оно начинается, происходит, завершается, каково время…?»
Самое главное в познании, а инженерное творчество — лишь его подвид, это умение правильно задавать вопросы, чтобы получить умный ответ, продвигаясь от абстрактного — к конкретному, от общего — к частному. Мысль не нова. Это уже своего рода классика[55].
- Подарок - Геннадий Ищенко - Техническая литература
- Загадка булатного узора - Юрий Гуревич - Техническая литература
- 100 великих достижений в мире техники - Станислав Зигуненко - Техническая литература
- Информационная безопасность. Курс лекций - А. Артемов - Техническая литература
- Полимерные материалы - Илья Мельников - Техническая литература