Читать интересную книгу Как собрать шпионские штучки своими руками - С. Корякин-Черняк

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 21 22 23 24 25 26 27 28 29 ... 36

Схема № 2. Существует и более простая схема срыва прослушивания (рис. 6.4).

В качестве модулятора с частотой 50 Гц используется обычное малогабаритное реле постоянного тока РЭС 22, РЭС 9.

Выводы обмотки подключаются к переменному току напряжением чуть ниже порога срабатывания. Реле жестко крепится к стеклу клеем ЭПД. Так же можно попробовать совсем элементарную схему для защиты от ЛСАР.

Рис. 6.4. Схема срыва прослушивания

Примечание

Все мы знаем закон физики — «Угол падения равен углу отражения». Это значит, что надо находиться строго перпендикулярно окну прослушиваемого помещения. Из квартиры напротив вы вряд ли поймаете отраженный луч, так как стены здания обычно, я уж не говорю об окнах, немного кривоваты и отраженный луч пройдет мимо.

Перед важным совещанием приоткройте окно, и пока шпионы бегают по соседним зданиям и ищут отраженный луч, вы, наверняка, успеете обсудить все важные моменты, а если менять положение окна каждые 5—10 мин. (приоткрыть, закрыть), то все желание прослушивать вас после такого марафона пройдет.

Проблема противодействия съему информации с использованием лазерного излучения остается весьма актуальной и в то же время одной из наименее изученных по сравнению с другими, менее «экзотическими» средствами промышленного шпионажа.

Использование ИК-диапазона для снятия информации с оконного стекла

Внимание

Использование этих устройств в некоторых случаях запрещено законодательством РФ и может привести к административной или уголовной ответственности.

Выше отмечалось, что звуковые волны в помещении вызывают микровибрации оконных стекол. Но на окно можно направить не только лазерный луч (что очень дорого, десятки тысяч долларов стоит лазерный микрофон), но и поток ИК-излучения. И в этом случае большая часть ИК-излучения пройдет через стекло внутрь, однако будет и отражение. При этом отраженный поток окажется промодулированным речевой информацией. Такую систему может создать и радиолюбитель.

Устройство стоит из двух относительно независимых частей: ИК-передатчика; ИК-приемника.

Принципиальная схема ИК-передатчика показана на рис. 6.5,а. В приведенном на рис. 6.5,б варианте схема с К1401УД4 обеспечивала уверенный съем информации с расстояния 5—10 м, вариант с TLE2074CN обеспечивал съем информации с расстояния до 15–20 м. Кроме того, второй вариант в силу более низкого уровня шумов позволял уверенно разбирать тихие слова даже на фоне громкой музыки.

Рассмотрим передатчик. Основу передатчика составляет генератор прямоугольных импульсов на микросхеме D1. Выходной сигнал генератора с частотой 35 кГц поступает на базу транзистора VT1, который совместно с VT2 образует составной транзистор. При помощи этого транзистора коммутируется ИК-светодиод VD1.

Рис. 6.5. Устройство для снятия информации со стекла по ИК-каналу: а—схема ИК-передатчика;

б—схема ИК-приемника

Отраженный сигнал поступает на вход приемника, схема которого показана на рис, 6.5,б. Принятый фотодиодом VD1 сигнал поступает на вход усилителя, собранного на ОУ А1.1.

Здесь вся полоса принятых частот усиливается в два раза, а также обеспечивается согласование фотодиода с последующими каскадами. На ОУ А1.2 собран активный полосовой фильтр, настроенный на частоту 34,67 кГц, т. е. на частоту несущей передатчика.

Коэффициент усиления каскада равен 100, полоса пропускания с неравномерностью 3 дб — 6,8 кГц, это обеспечивает избирательное усиление несущей и боковых полос. Такое построение схемы позволяет максимально ослабить действие помех и паразитного фона от осветительных приборов.

С выхода А1.2 сигнал поступает на амплитудный детектор, построенный по классической схеме, не требующей пояснений, На ОУ А1.3 и транзисторах VT1 и VT2 построен УНЧ, нагрузкой которого служат высокоомные телефоны ТМ-2А или аналогичные. Развязка узлов схемы по питанию осуществляется цепями R1 C1, R14 С9, R15 С8.

Наладка правильно собранной схемы сводится к подстройке частоты передатчика резистором R1 до получения на выходе приемника максимальной амплитуды сигнала. ОУ К1401УД4 не имеет прямой замены среди отечественных микросхем, но вместо А1.1 и А1.2 можно применить любые ОУ с полевыми транзисторами на входе и частотой единичного усиления не менее 2,5 МГц. А1.3 можно заменить на любой ОУ широкого применения.

Во время испытаний устройства проверялся такой вариант: КР574УД2Б и К140УД708. Заметно повысить характеристики приемника можно, если применить малошумящие ОУ TLE2074CN и TLE2144CN фирмы Texas Instruments.

Цоколевка этих микросхем полностью совпадает с цоколевкой К1401УД4. Светодиод и фотодиод можно взять зарубежного производства от систем ДУ телевизоров.

Примечание.

Чувствительность устройства можно повысить дополнительными ИК-светодиодами, включенными параллельно VD1 передатчика (через свои ограничительные резисторы). Можно также увеличить коэффициент усиления приемника, добавив каскад, аналогичный каскаду на А1.2. Для этого можно использовать свободный ОУ микросхемы А1.

Конструктивно светодиод и фотодиод расположены так, чтобы исключить прямое попадание ИК-излучения светодиода на фотодиод, но уверенно принимать отраженное излучение.

Питание приемника осуществляется от двух батареек типа «Крона», передатчик питается от четырех элементов типа R20 суммарным напряжением 6 В (1,5 В каждый).

В инфракрасных устройствах с передачей и приемом луча приемник и передатчик принято выполнять автономными блоками, хотя в большинстве случаев они, как минимум, имеют общий источник питания, а то и расположены рядом друг с другом (http://microcopied.ru/content/view/475/25/l/0/).

Поэтому если к двум проводам, идущим к приемнику от общего с передатчиком источника питания, прибавить всего один провод синхронизации, то можно получить замечательное устройство. Оно будет работать по принципу синхронного детектора и обладать такими его свойствами, как: избирательность; помехоустойчивость; возможность получения большого усиления.

И это без применения многокаскадных усилителей со сложными фильтрами.

Внутри помещения даже без использования дополнительной оптики и мощных излучателей устройство можно применять как охранную сигнализацию, срабатывающую при пересечении инфракрасного луча на расстоянии от излучателя до приемника 3–7 м.

Причем устройство не реагирует на внешнюю засветку от посторонних источников, как постоянную (солнце, лампы накаливания), так и модулируемую (люминесцентное освещение, фонарик).

Снабдив светодиод приемника собирающей линзой, можно перекрыть несколько десятков метров расстояния на открытом пространстве, имея отличную помехоустойчивость даже при идущем слабом снеге. При использовании линз на приемнике и передатчике одновременно возможно перекрытие еще большего расстояния, но возникает проблема точного наведения узкого луча передатчика на линзу приемника.

Генератор передатчика (рис. 6.6) собран на интегральном таймере DA1 включенном по схеме мультивибратора. Частота мультивибратора выбрана в диапазоне 20–40 кГц, но может быть любой. Она лишь ограничена снизу величиной конденсаторов С7, С8 и сверху частотными свойствами таймера.

Сигнал мультивибратора через ключ на VT5 управляет светодиодами передатчика VD2—VD4. Мощность излучения передатчика можно подбирать, меняя число светодиодов или ток через них резистором R17. Так как диоды работают в импульсном режиме, амплитудное значение тока через них можно выставить вдвое-втрое выше постоянно допустимого.

Рис. 6.6. Схема передатчика

Рис. 6.7. Схема приемника

Инфракрасный приемник (рис. 6.7) выполнен на дискретных элементах VD1, VT1—VT4, R1—R12,С1—С4 по схеме, использовавшейся во многих советских телевизорах. Его с успехом можно заменить импортным интегральным ИК-приемником, имеющим к тому же инфракрасный светофильтр. Однако желательно, чтобы на выходе приемника не формировался цифровой сигнал, то есть его тракт был бы линейным.

1 ... 21 22 23 24 25 26 27 28 29 ... 36
На этом сайте Вы можете читать книги онлайн бесплатно русская версия Как собрать шпионские штучки своими руками - С. Корякин-Черняк.

Оставить комментарий