Шрифт:
Интервал:
Закладка:
Все же мы не останавливаемся на том, что недоступно глазу. С помощью электронного микроскопа можно получить фотографии, помогающие увидеть и измерить еще меньшие объекты — вплоть до 10-8м (фиг. 5.9).
Фиг. 5.9. Фотография вирусов, полученная с помощью электронного микроскопа. Видна «большая» сфера, показанная для сравнения: диаметр ее равен 2·10-7 м, или 2000 Е.
А с помощью косвенных измерений (своего рода триангуляции в микроскопическом масштабе) можно измерять все меньшие и меньшие объекты. Сначала из наблюдений отражения света короткой длины волны (рентгеновских лучей) от образца с нанесенными на известном расстоянии метками измеряется длина волны световых колебаний.
Затем по картине рассеяния того же света на кристалле можно определить относительное расположение в нем атомов, причем результат хорошо согласуется с данными о расположении атомов, полученными химическим путем. Таким способом определяется диаметр атомов (около 10-10 м).
Дальше в шкале расстояний имеется довольно большая незаполненная «щель» между атомными размерами 10-10 м и в 105 раз меньшими ядерными размерами (около 10-15 м). Для определения ядерных размеров применяются уже совершенно другие методы: измеряется видимая площадь s, или так называемое эффективное поперечное сечение, Если же мы хотим определить радиус, то пользуемся формулой s = pr2, поскольку ядра можно приближенно рассматривать как сферические.
Эффективные сечения ядер можно определить, пропуская пучок частиц высокой энергии через тонкую пластинку вещества и измеряя число частиц, не прошедших сквозь нее. Эти высокоэнергетические частицы прорываются сквозь легкое облачко электронов, но при попадании в тяжелое ядро останавливаются или отклоняются. Предположим, что у нас имеется пластинка толщиной 1 см. На такой толщине укладывается приблизительно 108 атомных слоев. Однако ядра настолько малы, что вероятность того, что одно ядро закроет другое, очень незначительна. Можно себе представить, что высокоэнергетическая частица, налетающая на пластинку углерода толщиной 1 см, «видит» приблизительно то, что в сильно увеличенном масштабе показано на фиг. 5.10.
Фиг. 5.10. Воображаемая пластинка углерода толщиной 1 см при сильном увеличении (если бы были видны только ядра атомов).
Вероятность того, что очень малая частица столкнется с ядром, равна отношению площади, занимаемой ядрами (черные точки), к общей площади рисунка. Пусть над областью с площадью А по всей толщине пластинки находится N атомов (разумеется, каждый с одним ядром). Тогда доля площади, закрытая ядрами, будет равна Ns/А. Пусть теперь число частиц в нашем пучке до пластинки будет равно n1, а после нее равно n2; тогда доля частиц, не прошедших через пластинку, будет (n1-n2)/n1, что должно быть равно доле площади, занимаемой ядрами. Радиус же ядер вычисляется из равенства
Из таких экспериментов мы находим, что радиусы ядер лежат в пределах от 1·10-15 до 6·10-15 м. Кстати, единица длины 10-15 м называется ферми в честь Энрико Ферми (1901—1958).
Что можно ожидать в области еще меньших расстояний? Можно ли их измерять? На этот вопрос пока еще нет ответа. Может быть, именно здесь, в каком-то изменении понятия пространства или измерения на малых расстояниях, кроется разгадка тайны ядерных сил.
Несколько слов о стандарте длины. Разумно в качестве стандарта использовать какую-то естественную единицу длины, например радиус Земли или некоторую его долю. Именно таким образом возник метр. Первоначально он определялся как (p/2)·10-7 доля радиуса Земли. Однако такое определение нельзя считать ни особенно точным, ни удобным. Поэтому в течение долгого времени по международному соглашению в качестве эталона метра принималась длина между двумя метками, сделанными на особом брусе, который хранится в специальной лаборатории во Франции. Только много позднее поняли, что и такое определение метра не столь уж точно, как это необходимо, и не так уж универсально и постоянно, как этого хотелось бы. Поэтому сейчас принят новый стандарт длины как некоторое заранее установленное число длин волн определенной спектральной линии.
· · ·
Результаты измерения расстояний и времени зависят от наблюдателя. Два наблюдателя, движущиеся друг относительно друга, измеряя один и тот же предмет или длительность одного и того же процесса, получат разные значения, хотя, казалось бы, мерили одно и то же. Расстояния и интервалы времени в зависимости от системы координат (т. е. системы отсчета), в которой производят измерения, имеют различную величину. В последующих главах мы будем более подробно разбирать этот вопрос.
Законы природы не позволяют выполнять абсолютно точные измерения расстояний или интервалов времени. Мы уже упоминали ранее, что ошибка в определении положения предмета не может быть меньше, чем
где h — малая величина, называемая «постоянной Планка», а Dр — ошибка в измерении импульса (массы, умноженной на скорость) этого предмета. Как уже говорилось, эта неопределенность в измерении положения связана с волновой природой частиц.
Относительность пространства и времени приводит к тому, что измерения интервалов времени также не могут быть точнее, чем
где DЕ — ошибка в измерении энергии того процесса, продолжительностью которого мы интересуемся. Чтобы знать более точно, когда что-то произошло, мы вынуждены довольствоваться тем, что меньше знаем, что же именно произошло, поскольку наши знания об энергии, участвующей в процессе, будут менее точными. Эта неопределенность времени, так же как и неопределенность положения, связана с волновой природой вещества.
* Об этом ученые договорились в конце 1964 г., когда готовилось русское издание этой книги.— Прим. ред.
* Это равенство справедливо только тогда, когда площадь, занимаемая ядрами, составляет малую долю общей площади, т. е. (n1-n2)/n1 много меньше единицы. В противном же случае необходимо учитывать поправку на частичное «загораживание» одного ядра другим.
Глава 6
ВЕРОЯТНОСТЬ
Истинная логика нашего
мира—это подсчет
вероятностей.
Джемс Кларк Максвелл
§ 1. Вероятность и правдоподобие
§ 2. Флуктуации
§ 3. Случайные блуждания
§ 4. Распределение вероятностей
§ 5. Принцип неопределенности
§ 1. Вероятность и правдоподобие
«Вероятность», или «шанс»,— это слово вы слышите почти ежедневно. Вот по радио передают прогноз погоды на завтра: «Вероятно, будет дождь». Вы можете сказать: «У меня мало шансов дожить до ста лет». Ученые тоже часто употребляют эти слова. Сейсмолога интересует вопрос: какова вероятность того, что в следующем году в Южной Калифорнии произойдет землетрясение такой-то силы? Физик может спросить: с какой вероятностью этот счетчик Гейгера зарегистрирует двадцать импульсов в последующие десять секунд? Дипломата или государственного деятеля волнует вопрос: каковы шансы этого кандидата быть избранным президентом? Ну, а вас, конечно, интересует: есть ли шансы что-либо понять в этой главе?
Под вероятностью мы понимаем что-то вроде предположения или догадки. Но почему и когда мы гадаем? Это делается тогда, когда мы хотим вынести какое-то заключение или вывод, но не имеем достаточно информации или знаний, чтобы сделать вполне определенное заключение. Вот и приходится гадать: может быть, так, а может быть, и не так, но больше похоже на то, что именно так. Очень часто мы гадаем, когда нужно принять какое-то решение, например: «Брать ли мне сегодня с собой плащ или не стоит?» «На какую силу землетрясения должен я рассчитывать проектируемое здание?» «Нужно ли мне делать более надежную защиту?» «Следует ли мне менять свою позицию в предстоящих международных переговорах?» «Идти ли мне сегодня на лекцию?»
- 2. Пространство. Время. Движение - Ричард Фейнман - Прочее
- Царство Авалона, или претсмертные записи незамужней вдовы Екатерины! - Наталина Белова - Прочее
- Пингвины мистера Поппера - Ричард и Флоренс Этуотер - Прочая детская литература / Детская проза / Прочее