Шрифт:
Интервал:
Закладка:
Поняв это, Эйнштейн смог весьма эффективно использовать принцип эквивалентности. Поскольку гравитация и ускорение эквивалентны, Эйнштейн понял, что сама гравитация есть ни что иное, как искривление ткани пространства-времени. Посмотрим, что это значит.
Если вы толкнёте металлический шарик на гладком деревянном полу, то он покатится по прямой линии. Но если вы недавно пережили ужасный потоп, из-за чего покорёжился весь ваш пол, то шарик не покатится по прямой. В своём движении он теперь будет следовать искривлениям пола. Эйнштейн применил эту простую идею к ткани Вселенной. Он представил, что при отсутствии материи или энергии (нет ни Солнца, ни Земли, ни звёзд, ни прочих объектов) пространство-время, подобно гладкому деревянному полу, не имеет ни впадин, ни искривлений. Оно плоское. Это схематически проиллюстрировано на рис. 3.9а, где мы обратим внимание на сетку, введённую в пространстве. Конечно, пространство на самом деле трёхмерно, так что более адекватен рис. 3.9б, но двумерные схемы проще понять, чем трёхмерные, поэтому мы будем продолжать их использовать. Затем Эйнштейн представил, что присутствие материи и энергии оказывает такое же воздействие на пространство, как потоп на деревянный пол. Материя и энергия, например Солнце, вызывают искривление пространства (и пространства-времени[51]), как это проиллюстрировано на рис. 3.10а, б. И Эйнштейн показал, что подобно тому как шар на покоробленном полу катится по кривой линии, так и любой объект, движущийся в искривлённом пространстве (например, Земля в окрестностях Солнца), описывает кривую траекторию, как проиллюстрировано на рис. 3.11а, б.
Рис. 3.9. (а) Плоское пространство (двумерное), (б) Плоское пространство (трёхмерное)
Рис. 3.10. Пространство, деформированное Солнцем: (а) двумерное; (б) трёхмерное
Рис. 3.11. Земля остаётся на орбите вокруг Солнца, поскольку она движется по искривлённой линии ткани пространства-времени, и это искривление вызвано присутствием Солнца: (а) двумерная картина; (б) трёхмерная картина
Материя и энергия словно накладывают сеть холмов и долин, по которой объекты направляются невидимой рукой ткани пространства-времени. Вот так, согласно Эйнштейну, гравитация передаёт своё воздействие. Та же идея применима и к нашей повседневной жизни. Прямо сейчас ваше тело соскользнуло бы вниз по прогибу в ткани пространства-времени, вызванному присутствием Земли. Но ваше движение блокируется поверхностью, на которой вы сидите или стоите. Направленное вверх давление, которое вы чувствуете почти в каждый момент своей жизни (находитесь ли вы на земле, на полу своего дома, в уютном кресле или на своей широченной кровати), препятствует вашему соскальзыванию вниз в прогиб пространства-времени. Напротив, если вы взлетите высоко на скейтборде, то на какое-то мгновение отдадитесь гравитации, позволив ей свободно двигать ваше тело вдоль одного из склонов пространства-времени.
Рисунки 3.9, 3.10 и 3.11 схематично иллюстрируют триумф десятилетней борьбы Эйнштейна. Его основные усилия в течение тех лет были направлены на определение точной формы и величины деформаций, вызванных данным количеством материи или энергии. Математический результат, полученный Эйнштейном, отражён в так называемых полевых уравнениях Эйнштейна (на основе этого результата и сделаны упомянутые выше рисунки). Как свидетельствует название, Эйнштейн счёл деформацию пространства-времени проявлением — геометрическим воплощением — гравитационного поля. Чтобы ввести в игру геометрию пространства, Эйнштейн смог найти уравнения, играющие для гравитации ту же роль, что уравнения Максвелла для электромагнетизма.{52} С помощью этих уравнений затем были рассчитаны орбиты различных планет и даже траектория света, испущенного далёкой звездой и проходящего через искривлённое пространство-время. Полученные результаты были не только подтверждены с высокой степенью точности, но, в конкуренции с теорией Ньютона, теория Эйнштейна оказалась точнее.
Более того, поскольку общая теория относительности описывает детальный механизм действия гравитации, она позволяет ответить на вопрос: как быстро передаётся воздействие гравитации? Вопрос о скорости передачи сводится к вопросу о том, насколько быстро форма пространства может меняться во времени. Иными словами, как быстро могут деформации и рябь — рябь, подобная той, что возникает на поверхности пруда от брошенного камня, — бежать через пространство? Эйнштейн смог ответить на этот вопрос, и ответ, к которому он пришёл, был чрезвычайно радующий. Он установил, что деформации и рябь — т. е. гравитация — распространяются не мгновенно, как в теории Ньютона, а точно со скоростью света.[53] Ничуть не медленнее или быстрее, полностью согласуясь с ограничением скорости, наложенным специальной теорией относительности. Если инопланетяне утащат Луну с её орбиты, прилив начнёт спадать на полторы секунды позже, точно в тот момент, когда мы увидим, что Луна исчезла. Общая теория относительности Эйнштейна торжествует там, где теория Ньютона терпит крах.
Общая теория относительности и ведро
Помимо того что общая теория относительности дала миру математически элегантную, концептуально мощную и, наконец, полностью непротиворечивую теорию гравитации, она также основательно изменила наш взгляд на пространство и время. Как в ньютоновской концепции, так и в специальной теории относительности пространство и время предоставляли неизменную сцену для событий Вселенной. Хотя нарезка космоса на слои пространства в последовательные моменты времени придавала специальной теории относительности гибкость, немыслимую в ньютоновские времена, пространство и время никак не реагировали на происходящее во Вселенной. Пространство-время в образе «буханки», как мы его называли, представляется заданным раз и навсегда. В общей теории относительности всё изменилось. Пространство и время стали игроками в эволюционирующем космосе. Они ожили. Материя заставляет пространство искривляться, это заставляет материю двигаться, материя в своём движении искривляет пространство по-другому и т. д. Общая теория относительности обеспечивает хореографию для причудливого космического танца пространства, времени, материи и энергии.
Этот вывод ошеломляет. Но давайте теперь вернёмся к нашему старому вопросу: как насчёт ведра? Обеспечивает ли общая теория относительности физическую основу для реляционистских идей Маха, на что надеялся Эйнштейн?
На протяжении многих лет этот вопрос вызывал немало споров. Сначала Эйнштейн полагал, что общая теория относительности полностью включает в себя точку зрения Маха, причём он считал эту точку зрения настолько важной, что окрестил её принципом Маха. Действительно, в 1913 г., интенсивно работая над завершением общей теории относительности, Эйнштейн написал Маху воодушевлённое письмо, в котором описал, как его теория могла бы подтвердить анализ Маха ньютоновского эксперимента с ведром.{54} И в 1918 г., при написании статьи, перечисляющей три важнейшие идеи, лежащие в основании общей теории относительности, третьим пунктом Эйнштейн указал принцип Маха. Однако общая теория относительности весьма тонка и содержит некоторые аспекты, в которых физикам, включая самого Эйнштейна, удалось полностью разобраться лишь спустя многие годы. Всё больше разбираясь в этих тонкостях, Эйнштейн обнаружил, что ему всё труднее полностью включить принцип Маха в общую теорию относительности. Мало-помалу он расстался с иллюзиями по поводу идей Маха, и в последние годы своей жизни отказался от них совсем.{55}
Имея за плечами дополнительный опыт пятидесяти лет исследований и размышлений, мы можем с современной точки зрения оценить, до какой степени общая теория относительности согласуется с рассуждениями Маха. И хотя всё ещё остаются некоторые разногласия, я думаю, правильнее всего будет сказать, что в некоторых аспектах общая теория относительности имеет отчётливый привкус махианства, но она не совпадает с полностью реляционистскими взглядами, которые защищал Мах. Вот что я имею в виду.
Мах утверждал{56}, что когда поверхность вращающейся воды становится вогнутой, или когда вы чувствуете, что ваши руки растягивает в стороны, или когда натягивается верёвка, связывающая два камня, это не имеет никакого отношения к некоторому гипотетическому — и, с его точки зрения, полностью вводящему в заблуждение — понятию абсолютного пространства (или абсолютного пространства-времени, согласно нашим более современным представлениям). Вместо этого он считал, что явление ускоренного движения связано со всей материей, рассеянной по космосу. Не будь материи, не было бы и понятия ускорения, и не было бы ни одного из перечисленных выше физических эффектов (вогнутой поверхности воды, разброса рук, натяжения верёвки).
- Элегантная вселенная (суперструны, скрытые размерности и поиски окончательной теории) - Брайан Грин - Физика
- Великий замысел - Стивен Хокинг - Физика
- Физика пространства - Анатолий Трутнев - Физика
- Причина СТО – инвариантность скорости света - Петр Путенихин - Математика / Прочая научная литература / Физика
- Теория физического вакуума в популярном изложении - Г. Шипов - Физика