Читать интересную книгу Внуки Солнца - Владимир Гетман

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 16 17 18 19 20 21 22 23 24 ... 37

Факт резкого возрастания числа метеороидов с уменьшением их размеров свидетельствует об обилии мельчайших (пылевых) частиц в межпланетном пространстве. Первым доказательством этому служит явление зодиакального света. Это явление, может быть, обусловлено рассеянием солнечного света на мельчайших пылинках или на свободных электронах. Об этом свидетельствует подобие спектра зодиакального света солнечному спектру.

Первым, кто высказал мысль о космической природе зодиакального света в противовес идее о его атмосферной природе, был Джованни Доменико Кассини, наблюдавший зодиакальный свет еще в 1683 году. Тот самый Кассини, который открыл знаменитую щель в кольцах Сатурна и предположил, что кольцо состоит из множества очень мелких тел. Кстати, будучи первоклассным наблюдателем, Кассини определил с высокой точностью периоды осевого вращения Юпитера и Марса, открыл спутники Сатурна Рею, Япет, Тетис и Диону, составил подробную карту Луны, провел многочисленные наблюдения спутников Юпитера, по которым составил известные таблицы, оказавшиеся полезными не только в прикладном смысле, например для морской навигации, но и явившимися наблюдательной основой для пионерской оценки еще в 1676 году датским астрономом Оле Ремером такой фундаментальной мировой константы как скорость света.

Наиболее успешно наблюдение зодиакального света можно проводить в тропиках. Приблизительно через час после захода Солнца на западной части неба вырисовывается свечение (по яркости близкое к Млечному Пути), имеющее вид равнобедренного треугольника с основанием у горизонта. Большая часть этого треугольника простирается вдоль полосы зодиакальных созвездий, по которой происходит видимое перемещение Солнца, больших планет и Луны.

Результаты тщательных измерений, проведенных в последнее время, показали, что около 20 % зодиакального света поляризовано, причем поляризация создается в основном пылевыми частицами.

Пополнение зодиакального облака пылевыми частицами обусловлено влиянием различных факторов на их движение и прежде всего планетных возмущений и давления света. Причем возмущающее действие планет может быть настолько сильным, что оно оказывается способным не только изменить орбиты пылинок, но и привести к их падению на планету. На поверхность Земли по различным оценкам в год оседает до 40 000 тонн космического вещества.

Не захваченные планетами пылинки подвергаются следующему медленному испытанию. При движении вокруг Солнца передняя часть пылинки получает больше солнечной радиации, чем задняя, но в пространство пылинка отдает энергию равномерно во все стороны. Процесс вызывает постепенное торможение пылинки, приводящее к уменьшению радиуса ее орбиты. Под влиянием этого эффекта, называемого эффектом Пойнтинга — Робертсона, межпланетные частички по спирали приближаются к Солнцу и в конце концов падают на его поверхность. Это происходит тем быстрее, чем меньше размеры и плотность частички. Например, каменный шарик радиусом 1 см, движущийся на расстоянии 1 а. е. от Солнца, упадет на него через 20 млн лет. Каменной пылинке радиусом 10 мкм, расположенной в поясе астероидов, понадобится для этого 45 тыс. лет. Для сравнения скажем, что астероид радиусом 1 км падал бы в миллиард раз дольше, если бы, конечно, переизлучал энергию равномерно во все стороны.

Поскольку зодиакальное облако постоянно подвергается действию эффекта Пойнтинга — Робертсона, оно должно непрерывно истощаться из-за падения пылевых частиц на Солнце. По данным академика В. Г. Фесенкова, полное истощение должно было бы наступить через 100 тыс. лет. Источниками, постоянно пополняющими пылевой материей зодиакальное облако, по-видимому, являются метеорные рои и спорадический фон, порождаемые кометами и астероидами.

Все небесные тела, движущиеся вокруг Солнца, испытывают на себе давление солнечного света. Так, например, его действие на Землю в 10 000 млрд раз уступает по силе гравитационному притяжению Земли к Солнцу. Но для пылинок размером менее 10-4 см этот фактор действует весьма эффективно. Оказываемое на них давление света сообщает им движение, направленное от Солнца, и в итоге выметает их за пределы Солнечной системы.

В очень темную ночь в области неба, противоположной Солнцу, можно обнаружить слабое рассеянное пятно света, называемое противосиянием. Его максимальная яркость невелика: она эквивалентна яркости двухсот звезд 10-й звездной величины, размещенных на площадке неба 1X1°. Как показали исследования, противосияние обусловлено рассеянием солнечного света на мельчайших пылинках, выталкиваемых давлением света в противоположную от Солнца сторону.

В заключение этого параграфа о мельчайших астрономических объектах коснемся интересного вопроса, связанного с тандемом комета — метеороиды. Ранее мы подошли к эволюционной цепочке: комета — рой — ассоциация — спорадический фон. Однако наличие короткопериодических роев и практически полное отсутствие соответствующих им комет дает повод некоторым исследователям сомневаться в ее однозначности. В частности, шведский астрофизик X. Альвен отстаивает идею о том, что метеорные рои являются не продуктами распада, а источниками образования кометных ядер. Однако в настоящее время эта точка зрения большинством специалистов по малым телам системы не разделяется, а некоторые ее принципиальные положения представляются недостаточно обоснованными.

Кроме того, сейчас развивается представление о том, что некоторые рои могут иметь астероидную природу. Но этот вопрос еще требует детального исследования.

Ну, и как же вас наблюдать?

Визуальные наблюдения метеоров невооруженным глазом, являющиеся самым древним и самым дешевым методом наблюдений, оставили глубокий след в истории метеорной астрономии. Их доступность и простота сыграли значительную роль в накоплении обширных наблюдательных данных. На основе этих данных были открыты метеорные потоки, определены орбиты многих метеороидов, обнаружена связь метеорных роев с кометами. В настоящее время визуальный метод сохраняет некоторое научное значение, но в силу повсеместного развития более точных инструментальных методов в основном применяется лишь астрономами-любителями.

Наблюдения слабых метеоров, недоступных невооруженному глазу, астрономы проводили с помощью бино-куляров н небольших телескопов еще в конце прошлого века. Правда, из-за малого поля зрения этих инструментов вероятность обнаружения даже очень слабого метеора (а их всегда во много раз больше, чем ярких) невелика, что делает телескопические наблюдения очень утомительными. Но благодаря многолетним усилиям наблюдателей-энтузиастов все-таки удалось получить определенные сведения о численности слабых метеоров и их радиантах.

На смену визуальным методам пришли фотографические. Опыты применения фотографии в астрономии были начаты еще в середине XIX века. Из-за недостаточной чувствительности фотоэмульсий первыми сфотографированными объектами были Солнце, Луна, планеты и несколько наиболее ярких звезд. Но уже в 1882 году английскому астроному Д. Гиллу удалось получить несколько фотопластинок, буквально усеянных изображениями звезд. Вдохновленные удачей Д. Гилла, братья Поль и Проспер Анри в Париже в том же году с успехом использовали фотографический метод для составления звездных карт, положив начало звездной фотографии.

Через три года Л. Вейник в Праге сфотографировал первый метеор. Надо сказать, что способ фотографирования метеоров отличается от фотографирования других астрономических объектов. Когда вы исследуете галактику, звезду, комету или астероид, вы наводите на этот объект телескоп и фотографируете его столько времени, сколько вам это необходимо. При желании вы можете многократно повторять эту процедуру. Фотографировать таким образом метеоры не удается, поскольку неизвестно, в какой момент и в какой области небесной сферы может на мгновение появиться относительно яркий метеор (правда, случайные фотографии метеоров получались в различных обсерваториях мира, но научного значения они не имели). Необходимо направить в небо камеру с достаточно широким полем зрения, открыв затвор на все время наблюдений.

Даже приблизительное понимание природы небесных объектов невозможно без умения определять расстояния до них. Лишь знание расстояний (но не только их) до тел, порождающих метеоры, позволяет посчитать, сколько они излучают энергии и каковы их массы. Поэтому еще в 1893 году сотрудник Йельской обсерватории в США У. Элкин установил по нескольку камер в двух пунктах, разделенных расстоянием 3–5 км, с целью определить методом триангуляции расстояния до тел, порождающих метеоры, и их высоты над поверхностью Земли. На одном из пунктов фотографирование проводилось через вращающийся «пропеллер»-обтюратор, сделанный из велосипедного колеса. При вращении обтюратор перекрывал объективы камер с угловой скоростью от 6 до 10 об/с, и на фотоснимке изображение получалось в виде прерывистой линии, что позволяло определить скорость метеороида.

1 ... 16 17 18 19 20 21 22 23 24 ... 37
На этом сайте Вы можете читать книги онлайн бесплатно русская версия Внуки Солнца - Владимир Гетман.
Книги, аналогичгные Внуки Солнца - Владимир Гетман

Оставить комментарий