Шрифт:
Интервал:
Закладка:
Таким образом, кроме всего прочего, появляется возможность избирательного влияния на растения в процессе их роста и развития, в зависимости от того, что именно - "вершки" или "корешки* - нам нужно...
Как специалиста, работавшего в ту пору в производственном объединении "Союзводпроект", электрические поля интересовали Острякова еще и вот с какой точки зрения. Питательные вещества из почвы могут проникнуть в растения только в виде водных растворов. Казалось бы, какая разница растению, откуда получать влагу - из дождевого облака или из дождевальной установки? АН нет, опыты неопровержимо показывали: вовремя прошедший дождь куда эффективнее своевременной поливки.
Стали ученые разбираться, чем дождевая капля отличается от водопроводной. И выяснили: в грозовом облаке капельки при трении о воздух приобретают электрический заряд. В большинстве случаев положительный, иногда отрицательный. Вот этот-то заряд капли и служит дополнительным стимулятором роста растений. Вода в водопроводе такого заряда не имеет.
Более того, чтобы водяной пар в облаке превратился в каплю, ему нужно ядро конденсации - какая-нибудь ничтожная пылинка, поднятая ветром с поверхности земли. Вокруг нее и начинают скапливаться молекулы воды, превращаясь из пара в жидкость. Исследования показали, что такие пылинки очень часто содержат в своем составе мельчайшие крупинки меди, молибдена, золота и других микроэлементов, благотворно влияющих на растения.
"Ну а раз так, почему был искусственный дождик не сделать подобием естественного?" - рассудил Остряков.
И добился своего, получив авторское свидетельство на электрогидроаэронизатор - прибор, который создает электрические заряды на капельках воды. По существу, это устройство представляет собой электрический индуктор, который устанавливается на трубе разбрызгивателя дождевальной установки за зоной каплеобразования с таким расчетом, чтобы сквозь его рамку пролетала уже не струя воды, а рой отдельных капель.
Сконструирован и дозатор, позволяющий добавлять в водный поток микроэлементы. Устроен он так. В рукав, подающий воду в дождевальную установку, врезается кусок трубы из электроизоляционного материала. А в трубе располагаются молибденовые, медные, цинковые электроды... Словом, из того материала, какой микроэлемент нужней для подкормки. При подаче тока ионы начинают переходить с одного электрода на другой. При этом часть их смывается водой и попадает в почву. Количество ионов можно регулировать, меняя напряжение на электродах.
Если же нужно насытить почву микроэлементами бора, йода и других веществ, нс проводящих электрического тока, в действие вступает дозатор другого типа. В трубу с проточной водой опускают кубик из бетона, разделенный внутри на отсеки, в которых и помещаются нужные микроэлементы. Крышки отсеков служат электродами. Когда на них подастся напряжение, микроэлементы проходят сквозь поры в бетоне и уносятся водою в почву.
Картофельный детектор. В хлопотах и заботах незаметно прошло лето. Пора и урожай собирать. Но даже человек не всегда может отличить покрытую мокрой осенней землей картофелину от такого же черного комка земли. Что же говорить о картофельных комбайнах, гребущих с поля все подряд?
А если производить сортировку сразу на поле? Немало поломали голову инженеры над этой проблемой. Какие только детекторы не перепробовали механические, телевизионные, ультразвуковые... Пытались было на комбайн даже гамма-установку поставить. Гамма-лучи пронизывали насквозь земляные комья и клубни, словно рентген, а стоящий напротив датчика приемник определял "что есть что".
Но гамма-лучи вредны для здоровья людей, при работе с ними необходимо принимать специальные меры предосторожности. Кроме того, как выяснилось, для безошибочного детектирования необходимо, чтобы все клубни и комья были приблизительно одинакового диаметра. Поэтому специалисты Рязанского радиотехнического института - старший преподаватель А.Д.Касаткин и тогдашний студент-дипломник, а ныне инженер Сергей Решетников - пошли по другому пути.
Они взглянули на картофельный клубень с точки зрения физики. Известно, что емкость конденсатора зависит от проницаемости материала, заложенного между его обкладками. Меняется диэлектрическая проницаемость, меняется и емкость. Этот физический принцип и был заложен в основу детектирования, так как в эксперименте выяснилось:
диэлектрическая проницаемость картофельного клубня намного отличается от диэлектрической проницаемости земляного комка.
Но найти правильный физический принцип - только начало дела. Нужно было еще выяснить, на каких частотах детектор будет работать в оптимальном режиме, разработать принципиальную схему устройства, проверить правильность идеи на лабораторном макете...
- Очень трудно оказалось создать чувствительный емкостный датчик, рассказывал Сергей Решетников. - Мы перебрали несколько вариантов и в конце концов остановились на такой конструкции. Датчик представляет собой две пружинные пластинки, расположенные друг относительно друга под некоторым углом. В эту своеобразную воронку и падают картофелины вперемешку с комьями земли. Как только картофелина или комок касается обкладок конденсатора, система управления вырабатывает сигнал, значение которого зависит от диэлектрической проницаемости объекта, находящегося внутри датчика. Исполнительный орган - заслонка - отклоняется в ту или иную сторону, производя сортировку...
Работа в свое время была удостоена награды на Всесоюзном смотре научнотехнического общества студентов. Однако что-то не видно пока картофельных комбайнов, оборудованных такими датчиками. А ведь их делают там же, в Рязани...
Впрочем, сетования по поводу российсхой неповоротливости оставим до другого раза. Нынешний разговор ведь о секретах растений. О них-то и поговорим дальше.
"Шестерни" живых часов
Растения а сундуке. Приезжий мог легко заблудиться в Париже XVIII века. Названий улиц практически не было, лишь немногие дома имели собственные имени, выбитые на фронтонах... Еще проще было заблудиться в науке того времени. Теория флогистона камнем преткновения лежала на пути развития химии и физики. Медицина не знала даже такого простейшего прибора, как стетоскоп; врач если и выслушивал больного, то делал это, прикладывая ухо к его груди. В биологии все живые организмы именовались просто рыбами, зверями, деревьями, травами...
И все же наука уже сделала огромный шаг по сравнению с прошлыми веками: ученые в своих исследованиях перестали довольствоваться лишь умозаключениями, стали принимать во внимание и экспериментальные данные. Именно эксперимент и послужил основой открытия, о котором я хочу вам рассказать.
... Жан-Жак де Мэран был астрономом. Но, как и положено настоящему ученому, он был еще и наблюдательным человеком. А потому летом 1729 года обратил внимание на поведение гелиотропа - комнатного растения, стоявшего в его кабинете. Как оказалось, гелиотроп обладает особой чувствительностью к свету; он не только поворачивал свои листья вслед за дневным светилом, но с заходом солнца его листья поникали, опускались. Растение как бы засыпало до следующего утра, чтобы расправить свои листья лишь с первым солнечным лучом. Но самое интересное не в этом. Де Мэран обратил внимание, что гелиотроп занимается своей "гимнастикой" и в том случае, когда окна комнаты задернуты плотными шторами. Ученый поставил специальный опыт, заперев растение в подвал, и убедился, что гелиотроп продолжает засыпать и просыпаться в строго определенное время даже в полной темноте.
Де Мэран рассказал о замечательном явлении друзьям и... не стал продолжать опыты дальше. Как-никак он был астроном и исследования природы полярного сияния занимали его больше, чем странное поведение комнатного растения.
Однако зерно любопытства было уже брошено в почву научной любознательности. Рано или поздно оно должно было прорасти. Действительно, 30 лет спустя, там же, в Париже, появился человек, который подтвердил открытие де Мэрана и продолжил его опыты.
Звали этого человека Генри-Луи Дюамель. Его научные интересы лежали в области медицины и сельского хозяйства. И потому, узнав об опытах де Мэрана, он заинтересовался ими гораздо больше самого автора.
Для начала Дюамель воспроизвел опыты де Мэрана с возможно большей тщательностью. Для этого он взял несколько гелиотропов, разыскал старый винный подвал, вход в который вел через другой темный подвал, и оставил растения там. Более того, некоторые гелиотропы он даже запирал в большой, обитый кожей сундук и укрывал сверху несколькими одеялами, чтобы стабилизировать температуру... Все оказалось напрасно: гелиотропы поддерживали свой ритм и в этом случае. И Дюамель с чистой совестью записал: "Эти эксперименты позволяют заключить, что движение листьев растений не зависит ни от света, ни от тепла..."
- О чем говорят запахи - Станислав Славин - Прочая научная литература
- Тайны архивов: вырванные страницы - Александр Николаевич Дугин - Прочая научная литература
- Бюрократия, Запланированный хаос, Антикапиталистическая ментальность - Людвиг Мизес - Прочая научная литература