Читать интересную книгу 101 ключевая идея: Физика - Джим Брейтот

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 2 3 4 5 6 7 8 9 10 ... 25

См. также статьи «Деление ядер», «Радиоактивность».

АТОМЫ И МОЛЕКУЛЫ

Атом — мельчайшая частица химического элемента, сохраняющая его свойства. Элемент — вещество, которое невозможно разложить на составляющие. Если атом состоит из положительно заряженного ядра, окруженного отрицательно заряженными электронами, то атомное ядро — из протонов, которые имеют одинаковый электрический заряд, и нейтронов, не имеющих заряда. Масса протона приблизительно равна массе нейтрона, а масса электрона значительно меньше массы протона или нейтрона.

Электроны в атомах располагаются в оболочках, окружающих ядро. Энергия электрона, находящегося в оболочке, постоянна. Нулевая энергия электрона в атоме соответствует энергии электрона вне атома, поэтому в атоме энергия электрона отрицательна. Чем дальше расположена оболочка, тем выше энергия электрона в оболочке. Каждая оболочка может содержать определенное максимальное количество электронов. В нормальном, невозбужденном, состоянии электроны обладают наименьшей энергией. Причем чем ближе к ядру расположены электроны, тем ниже их энергия. Атомы могут объединяться в молекулы с помощью межатомных связей, образующихся при взаимодействии их внешних электронов. Каждый тип атома условно обозначают как AZX, где X — химический символ элемента, Z — количество протонов, соответствующих атомному числу, а А — массовое число, соответствующее числу протонов и нейтронов, вместе взятых.

Изотопы — атомы одного и того же элемента, но с разным количеством нейтронов в ядре. Например, у водорода может быть три изотопа:, состоящий из одного протона и одного электрона; 11H, состоящий из одного протона и одного нейтрона в ядре и одного электрона; а также 31Н, в ядре которого находятся два нейтрона. Изотопы элемента обладают различными физическими свойствами, потому что из-за разного числа нейтронов каждый тип атома имеет разную массу. Поскольку все они представляют один и тот же элемент, т. е. имеют одинаковое число протонов и электронов, они обладают одинаковыми химическими свойствами.

См. также статьи «Типы межатомных связей», «Энергетические уровни атомов».

БОЛЬШОЙ ВЗРЫВ

Согласно теории Большого Взрыва, наша Вселенная образовалась из одной точки в результате мощного взрыва, во время которого возникли пространство, время и материя. Предполагается, что это событие произошло около 12 миллиардов лет назад. По мере расширения Вселенной образовались галактики, до сих пор удаляющиеся друг от друга. Известно, что дальние галактики удаляются друг от друга со скоростью, приблизительно равной скорости света.

Теория Большого Взрыва берет свое начало в открытии, сделанном в 1929 году американским астрономом Эдвином Хабблом. Он обнаружил, что скорость удаления галактик пропорциональна расстоянию до них. Это отношение, известное как закон Хаббла, записывается следующим образом:

υ = Hd, где υ — скорость удаления, d — расстояние до галактик, а H — постоянный коэффициент (постоянная Хаббла).

Исходя из закона Хаббла можно сделать вывод, что Вселенная расширяется, однако теорию Большого Взрыва не признавали до тех пор, пока в 1965 году ученые Арно Пенсиас и Роберт Уилсон, проверяющие систему обнаружения радиосигналов со спутников, не открыли космическое фоновое микроволновое излучение. Оказалось, что последнее в микроволновом диапазоне электромагнитного спектра поступает со всех сторон космического пространства. Ученые пришли к мнению, что это излучение распространяется по Вселенной с того времени, как вещество после Большого Взрыва остыло и стало радиопрозрачным.

До открытия, сделанного Пенсиасом и Уилсоном, многие астрономы поддерживали теорию стационарной Вселенной, согласно которой ее расширение происходит вследствие образования нового вещества между расходящимися в результате этого галактиками. От стационарной модели пришлось отказаться, так как она, в отличие от теории Большого Взрыва, не объясняет наличия фонового микроволнового излучения, распространяющегося по всем направлениям. Вышеуказанная теория также объясняет, почему водорода во Вселенной в три раза больше, чем гелия.

См. также статьи «Закон Хаббла», «Электромагнитные волны».

ВЕКТОРЫ

Векторной величиной называется любая физическая величина, имеющая наряду с числовым значением и направление. Перемещение, скорость, ускорение, сила, импульс, напряженность поля — все это векторные величины.

Скалярной величиной называется физическая величина, не имеющая направления. В качестве примеров можно привести расстояние, массу, энергию и мощность.

Векторную величину можно представить в виде направленного отрезка, длина которого пропорциональна числовому значению (модулю) величины, а направление совпадает с направлением величины. Вектор величины F, направленный под углом θ к некоей прямой линии, имеет две составляющие: F cos θ параллельно линии и F sin θ перпендикулярно линии. Если указанная линия является осью x системы координат, то Fx = F cos θ и Fy = F sin θ. Вектор можно разложить на составляющие i и j, направленные вдоль оси x и оси у соответственно, причем F = (F cos θ)i + (F sin θ)j.

Величину вектора F и его направление можно вычислить исходя из его перпендикулярных компонентов Fx и Fy по формуле

F = (Fx2 + Fy2)1/2 и tg θ = Fy/Fx, где θ — угол между вектором и осью х.

Сложение векторов

Правило параллелограмма для сложения векторов — точный геометрический метод нахождения результирующего вектора двух заданных векторов. Два вектора изображаются так, чтобы они образовывали две смежные стороны параллелограмма. Результирующим вектором будет его диагональ, направленная от начала первого вектора к концу второго. Два вектора прикладываются друг к другу так, чтобы конец первого был в той же точке, что и начало второго, поэтому сумма векторов — вектор, направленный из начала первого в конец второго.

Правило параллелограмма

Правило косинусов для сложения двух векторов А и В предлагает следующую формулу для определения величины R результирующего вектора:

R2 = А2 + В2 + 2АВ cos θ, где θ — угол между двумя векторами.

См. также статьи «Равновесие сил», «Сила и движение».

ВЗАИМОДЕЙСТВИЯ ЧАСТИЦ

В природе существуют четыре основных типа сил — это гравитационные, электромагнитные, сильного ядерного и слабого ядерного взаимодействий. Эти силы действуют в результате обмена порциями энергии, которые называются квантами. Диаграммы (так называемые диаграммы Фейнмана), которые применяют для демонстрации природы этих взаимодействий, впервые составил Ричард Фейнман.

К электромагнитным относятся электростатические и магнитные силы. Переносчиками электромагнитного взаимодействия между заряженными частицами служат не имеющие массы кванты — виртуальные фотоны, так как они прекратили бы взаимодействие, если бы для их обнаружения применили детектор.

Сильное ядерное взаимодействие удерживает вместе нейтроны и протоны в ядре. Протоны и нейтроны состоят из трех фундаментальных частиц — кварков, которые, в свою очередь, удерживаются вместе благодаря обмену квантами, называемыми глюонами. Глюоны в протонах или нейтронах могут образовывать кварк-антикварковую пару с такими свойствами, что антикварк и другой кварк образуют составную частицу, называемую пионом, переходящую к другому протону или нейтрону. Такой обмен пионами представляет собой механизм сильного взаимодействия.

Слабые ядерные силы заставляют протон превращаться в нейтрон в ядре с избытком протонов, или нейтрон превращается в протон в ядре с избытком нейтронов. В ходе этого процесса возникает недолговечная частица бозон (W).

Диаграммы Фейнмана

При β- распаде нейтрон превращается в протон и испускает W- бозон, который распадается на β- частицу (электрон) и антинейтрино. При β+ — распаде протон превращается в нейтрон и испускает W- бозон, распадающийся на позитрон и нейтрино.

См. также статьи «Кварки», «Радиоактивность 2», «Фотон».

ВОЛНОВОЕ ДВИЖЕНИЕ 1 — ПРИРОДА ВОЛН

Электромагнитные, звуковые, сейсмические и другие типы волн обладают как характерными (типовыми), так и общими свойствами.

Механические

Механическими называются волны, распространяющиеся в веществе благодаря колебаниям его частиц. Всем типам волн, за исключением электромагнитных, для распространения необходима среда; следовательно, все они — механические.

1 2 3 4 5 6 7 8 9 10 ... 25
На этом сайте Вы можете читать книги онлайн бесплатно русская версия 101 ключевая идея: Физика - Джим Брейтот.

Оставить комментарий