Читать интересную книгу "Большая Советская энциклопедия (ГА) - БСЭ БСЭ"

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать

  Соч.: Werke, Bd 1 —, Gött., 1908 —; в рус. пер. — Общие исследования о кривых поверхностях, в сборнике: Об основаниях геометрии, 2 изд., Каз., 1895; Теоретическая астрономия. (Лекции, читанные в Гёттингене в 1820—26 гг., записанные Купфером), в кн.: Крылов А. Н., Собр. трудов, т. 6, М. — Л., 1936; Письма П. С. Лапласа, К. Ф. Гаусса, Ф. В. Бесселя и др. к академику Ф. И. Шуберту, в сборнике: Научное наследство, т 1, М. — Л., 1948, с. 801—22.

  Лит.: Клейн Ф., Лекции о развитии математики в 19 столетии, пер. с нем., ч. 1, М. — Л., 1937: Карл Фридрих Гаусс. Сб. ст., М., 1956.

К. Ф. Гаусс.

Гаусса - Крюгера проекция

Га'усса — Крю'гера прое'кция (иногда проекция Гаусса), одна из геодезических проекций .

Гаусса постоянная

Га'усса постоя'нная , одна из фундаментальных астрономических постоянных (обозначается k ). Первоначально определена К. Гауссом как приближённое значение корня квадратного из гравитационной постоянной k2 , входящей в формулу задачи двух тел (в небесной механике):

 

  которая связывает массы Солнца mS , Земли mT и Луны mL с периодом обращения Р системы Земля—Луна по эллиптической орбите вокруг Солнца и с большой полуосью а этой орбиты, причём массу Солнца и указанную большую полуось а Гаусс принимал в качестве единиц массы и длины, а в качестве единицы времени — средние солнечные сутки. При принятых в его время значениях Р и отношений mT /mS , mL /mT Гаусс нашёл:

  k = 0,01720209895.

  Это значение k (которое считается точным) входит в современную систему фундаментальных астрономических постоянных и называется гауссовой постоянной (или Г. п.). Единица расстояния, соответствующая этому значению k и формуле (1), при условии, что единицей времени являются эфемеридные сутки (см. Время ), называют астрономической единицей (а. е.). Последняя несколько отличается от большей полуоси а орбиты системы Земля — Луна, которая в соответствии с формулой (1) и современными значениями Р, mT /mS , тL /mT составляет 1,000000032 a. e .

  Ю. А. Рябов.

Гаусса принцип

Га'усса при'нцип , принцип наименьшего принуждения, один из вариационных принципов механики , согласно которому для механической системы с идеальными связями (см. Связи механические ) из всех кинематически возможных, т. e. допускаемых связями, движении, начинающихся из данного положения и с данными начальными скоростями, истинным будет то движение, для которого «принуждение» Z является в каждый момент времени наименьшим. Установлен К. Гауссом (1829).

  Физическая величина, называемая «принуждением», вводится следующим образом. Свободная материальная точка с массой m при действии на неё заданной силы F будет иметь ускорение F/m ; если же на точку наложены связи, то её ускорение при действии той же силы F станет равным какой-то др. величине w . Тогда отклонение точки от свободного движения, вызванное действием связи, будет зависеть от разности этих ускорений, т. e. от F/m—w . Величину Z , пропорциональную квадрату этой разности, и называют «принуждением». Для одной точки

 

  а для механической системы Z равняется сумме таких величин.

  Рассмотрим, например, точку, которая начинает двигаться вдоль гладкой наклонной плоскости из положения А без начальной скорости (см. рис. ). Для неё кинематически возможно любое перемещение АВ, AB1 , AB2 ,... в этой плоскости с какими-то ускорениями w, w1 , w2 ,..; при свободном же падении точка совершила бы перемещение AC вдоль вертикали с ускорением g . Тогда отклонения точки от свободного движения изобразятся отрезками CB, CB1 , CB2 ,..., наименьшим из которых будет отрезок CB , перпендикулярный к наклонной плоскости. Следовательно, «принуждение» Z , пропорциональное квадратам CB, CB1 , CB2 ,..., будет наименьшим при движении вдоль линии наименьшего ската AD . Это и будет истинное движение точки, происходящее с ускорением w = gsina.

  Г. п. пользуются для составления уравнений движения механических систем и изучения свойств этих движений.

  Лит . см. при ст. Вариационные принципы механики .

Рис. к ст. Гаусса принцип.

Гаусса распределение

Га'усса распределе'ние , закон распределения вероятностей; то же, что нормальное распределение .

Гаусса система единиц

Га'усса систе'ма едини'ц , система электрических и магнитных величин с основными единицами сантиметр, грамм и секунда, в которой диэлектрическая и магнитная проницаемости являются безразмерными величинами, причём для вакуума они приняты равными единице. Единицы электрических величин в Г. с. е. равны единицам абсолютной электростатической системы СГСЭ, а единицы магнитных величин — единицам абсолютной электромагнитной системы СГСМ, в связи с чем Г. с; е. часто называют симметричной системой СГС (см. СГС система единиц ). Г. с. е. названа в честь К. Гаусса , высказавшего в 1832 идею создания абсолютной системы единиц с основными единицами миллиметр, миллиграмм и секунда и разработавшего эту систему (совместно с В. Вебером ) для измерений магнитных величин.

  Лит.: Бурдун Г. Д., Единицы физических величин, 4 изд., M., 1967.

  Г. Д. Бурдун.

Гаусса теорема

Га'усса теоре'ма , теорема электростатики , предложенная К. Гауссом и устанавливающая связь потока напряжённости Е электрического поля через замкнутую поверхность с величиной заряда q , находящегося внутри этой поверхности. Потоком вектора Е через элемент поверхности DSi называется произведение величины этого элемента и проекции Eni вектора Е на нормаль к DSi . Поток N через замкнутую поверхность S равен сумме потоков через все элементы поверхности. В абсолютной системе единиц Гаусса (СГС)

 

  Г. т. вытекает из закона Кулона — закона взаимодействия неподвижных точечных зарядов в вакууме.

  В диэлектрике Г. т. справедлива для потока вектора электрической индукции D :

 

  где q — суммарный свободный заряд внутри поверхности S . Формула (2) представляет собой интегральную форму одного из уравнений Максвелла для электромагнитного поля (см. Электродинамика ) и выражает тот факт, что электрические заряды являются источниками электрического поля.

  Г. Я. Мякишев.

Гаусса формулы

Га'усса фо'рмулы , формулы, относящиеся к различным разделам математики и носящие имя К. Гаусса .

1) Квадратурные Г. ф. — формулы вида

 

  в которых узлы xk и коэффициенты Ak не зависят от функции f (x) и выбраны так, что формула точна (т. е. Rn = 0) для произвольного многочлена степени 2n - 1 . В отличие от квадратурных формул Ньютона — Котеса, узлы в квадратурных Г. ф., вообще говоря, не являются равноотстоящими. Если р (х) ³ 0 и

 

  то для любого натурального n имеется единственная квадратурная Г. ф. Эти формулы имеют большое практическое значение, т.к. в ряде случаев они дают значительно большую точность, чем квадратурные формулы с тем же числом равноотстоящих узлов. Сам Гаусс исследовал (1816) случай р (х) º 1 .

  2) Г. ф., выражающая полную кривизну К поверхности через коэффициенты её линейного элемента; в координатах, для которых ds2 = l(du2 + dv2 ) , Г. ф. имеет вид

 

  Эта формула была опубликована в 1827 и показывает, что полная кривизна не меняется при изгибании поверхности. Она составляет содержание одного из основных предложений созданной Гауссом внутренней геометрии поверхности.

На этом сайте Вы можете читать книги онлайн бесплатно русскую версию Большая Советская энциклопедия (ГА) - БСЭ БСЭ.
Книги, аналогичгные Большая Советская энциклопедия (ГА) - БСЭ БСЭ

Оставить комментарий