Шрифт:
Интервал:
Закладка:
Марс меньше по размерам – его масса составляет всего одну десятую массы современной Земли – и несколько иначе устроен. Пропорция летучих веществ в марсианских скалах оказалась больше. Однако и ему довелось пережить столкновения с огромными планетными зародышами. Именно это, вероятно, вызвало такую странную географию планеты – север и юг Марса разительно различаются: северная треть покрыта тонкой корой, и на ней раскинулись гладкие равнины, а почти на всем южном полушарии кора толще, и там господствуют скалистые плоскогорья.
Интересно, что в те далекие времена – 4 миллиарда лет назад – климат на Марсе и Венере, вероятно, был гораздо мягче и больше похож на земной[79]. Теперь, конечно, все совсем не так: Венера обзавелась толстой атмосферой, насыщенной углекислым газом, и давление на ее поверхности очень высоко, а в результате температура там превышает 430 градусов по Цельсию, а атмосфера Марса истончилась и высохла – и теперь в основном состоит из углекислого газа. Еле заметная прослойка воздуха обеспечивает давление всего в 0,6 % давления земной атмосферы, а диапазон температур составляет в зависимости от времени года и местоположения от –130 до +20 градусов по Цельсию. Однако мы надеемся, что именно на Марсе условия подходят для возникновения жизни: у нас есть явные доказательства, что когда-то по его поверхности текла вода, накапливаясь во впадинах, а минералогический и химический состав его почвы и атмосферы не так уж отличается от среды во многих местах на Земле.
Атмосферы планет очень нестойки и переменчивы. Тонкий покров атмосферы вроде земной удерживается одной лишь гравитацией. Однако атомы и молекулы газов находятся в постоянном движении, и чем выше температура, тем больше средняя скорость составляющих атмосферу частиц. Особенно шустрые частички способны разогнаться до критической скорости и умчаться в космическую пустоту[80]. Обычно беглянки состоят из самых легких компонентов, и именно поэтому Земля уже давно растеряла первоначальную атмосферу из водорода и гелия. И сегодня, если молекулы воды в атмосфере распадаются под воздействием ультрафиолетового излучения или потока частиц, атомы водорода способны подняться вверх и вырваться из объятий Земли.
Судя по всему, ограничить эти потери помогает магнитное поле планеты: оно отчасти защищает верхние слои атмосферы от агрессивного звездного излучения. И хорошо, поскольку сбежавшие атомы водорода пропадают навсегда, а вместе с каждым атомом мы лишаемся молекулы воды, в которую он входил, из-за чего планета могла бы иссохнуть, – возможно, подобный механизм и превратил марсианский климат, некогда куда более влажный и теплый, в нынешнюю безводную пустыню.
Земля тоже уже не та, что поначалу. Условия на ее поверхности – и температура, и химический состав – с течением эпох очень сильно менялись. Однако древнейшие минералы – кристаллы циркона – говорят нам, что либо на поверхности планеты, либо поблизости от нее всегда была вода в жидком состоянии. А главное, в течение первых полутора миллиардов лет после формирования Земли в атмосфере было очень мало весьма активного элемента – кислорода.
Затем это изменилось, и изменилось благодаря подлинно незаурядному явлению – зарождению на планете жизни. Примерно два с половиной миллиарда лет назад одноклеточные организмы наподобие сине-зеленых водорослей одержали верх в своих экосистемах и принялись бурно размножаться. Их метаболический аппарат вырабатывал очень много кислорода, и повышение его концентрации в следующий миллиард лет совершенно преобразило планету.
Менялись и другие характеристики. Средняя температура на Земле в прошлом была заметно выше нынешней – на несколько градусов. Однако иногда она падала так низко, что почти вся планета покрывалась льдом[81]. Тем не менее глубоко укоренившиеся химические и геофизические циклы, судя по всему, подталкивают наш климат к своего рода неустойчивому равновесию – сохраняют жидкую воду на поверхности, поскольку состав атмосферы контролирует потерю тепла.
Живые существа самым непосредственным образом участвуют в работе сложнейшей системы планетных механизмов. В любой момент их триллионы триллионов – они процветают и вымирают, питаются и разлагаются, и неустанно меняют мир. Фантастически бурная деятельность! Однако по космическим масштабам все это жалкие мелочи, изменения характеристик планеты, которые ни к чему особенному не приведут – примерно как еле заметное выветривание окаменелостей. И в самом деле, картина в целом заставляет взглянуть на наше существование с иной точки зрения, отличающейся от привычной нам, людям, эгоистичной и местнической.
* * *Умение смотреть на картину в целом – один из важнейших подходов, без которого нам не разобраться в хитростях самого принципа заурядности и доводов против него и не начать формулировать ответы на вопрос о нашей роли в мироздании. Давайте представим себе ненадолго, что мы наблюдаем нашу Галактику, Млечный Путь, извне. Мы всемогущи и всевидящи и способны наблюдать всю сложную структуру более чем из 200 миллиардов звезд, огромные объемы газа, пыли и темной материи – и всю их эволюцию на протяжении не просто веков или тысячелетий, а миллиардов лет. Кроме того, у нас слабость к отдельным звездным объектам, и Солнце – один из них.
Когда мы заметили его в первый раз, этот волк-одиночка только-только зажег свое ядро ослепительным огнем протон-протонного цикла. Энергия этой топки вырывается наружу двумя путями. Один – непрерывный поток субатомных частиц под названием нейтрино. Эти призрачные созданьица практически ни с чем не взаимодействуют, и даже плотная громада Солнца для них в основном прозрачна – они вылетают оттуда во Вселенную с околосветовой скоростью. Другой компонент энергии термоядерного синтеза – густой поток фотонов, которые просачиваются через 650 000 километров солнечной плазмы, а потом вырываются в космос в виде света – видимого, ультрафиолетового и инфракрасного. Этот мощный поток излучения согревает планеты, астероиды, кометы, пыль и газ, вращающиеся вокруг Солнца. У внутренних планет он играет главенствующую роль в создании среды на поверхности – накачивает энергией циркулирующие атмосферы, и даже океан жидкой воды на третьей по счету планете. Однако звездочка, за которой мы наблюдаем, медленно, но неуклонно меняется. За первые четыре миллиарда лет она стала ярче примерно на 30 % и за это время обеспечила бурное развитие разнообразных живых существ на третьей планете. Примерно через 10 миллиардов лет она стала вдвое ярче, чем в молодости. Мы с философской печалью отмечаем признаки старения – неизбежный прогресс, который закончится смертью.
В отличие от многих других явлений во Вселенной, звезды вроде Солнца с возрастом становятся все ярче – до поры до времени. Когда одинокие протоны ядра водорода сливаются в недрах звезды, создавая ядра гелия, они меняют фундаментальный состав звезды – обогащают его более тяжелым элементом. В результате внутренность звезды становится плотнее и горячее, а темп потребления водорода постепенно повышается (вспомните костер, который медленно схлопывается и при этом горит все ярче и жарче).
Это, конечно, сильно повлияло на влажную планету, которая вращается вокруг Солнца: к рубежу в шесть миллиардов лет возрастающая яркость звезды разогрела климат до таких пределов, что океаны из жидкой воды могут уже и не сохраниться. Однако к десяти миллиардам лет это уже самая маленькая из проблем, с которыми столкнулась эта планета и ее ближайшие соседки. Солнце сожгло последние капли водорода в ядре и начинает трудный и мучительный переход в звездную загробную жизнь.
В течение периода, который в описываемом далеком будущем продлится чуть больше миллиарда лет, наша звезда все больше разрастается и становится все беспокойнее. Внешняя ее оболочка раздувается, причем рывками, и в конце концов поглощает внутренние планеты, а гигантский раскаленный докрасна шар почти достигает орбиты когда-то влажной планеты. При этом некогда цельная звезда разбрасывает огромное количество своего вещества, пылающего газа и быстро конденсирующейся пыли в межзвездное пространство. Так она в конечном итоге израсходует чуть ли не половину своей массы. Это радикально меняет гравитационную динамику планет, ее окружающих, чьи орбиты приспосабливаются к обстановке и тоже расширяются в соответствии с законами, которые вывело одно разумное живое существо по имени Исаак Ньютон более миллиарда лет спустя.
Стремительное расширение Солнца обеспечивается целым рядом внутренних перестановок и процессов. Когда расходуется весь водород в ядре, оно начинает сжиматься и нагреваться. Вокруг него остается лишь тонкая оболочка из водорода, участвующего в термоядерном синтезе – это немного похоже на мерцание периметра только что догоревшего костра. Однако в конце концов сжимающееся ядро так сильно разогревается, что начинается так называемая тройная гелиевая реакция. Этот процесс требует температуры в 100 миллионов градусов – в десять раз больше, чем для протон-протонной реакции. Кроме того, эта реакция не такая производительная, однако в результате гелий превращается в два новых элемента – кислород и углерод. В следующие сто миллионов лет ядро звезды все сильнее уплотняется, и поток энергии заставляет внешнюю часть звезды еще сильнее расти – пока гелиевое топливо тоже не истощится.
- Когда ты была рыбкой, головастиком - я... - Мартин Гарднер - Прочая научная литература
- Радиус наблюдаемой Вселенной и горизонт Вселенной - Петр Путенихин - Математика / Прочая научная литература / Физика
- Наша математическая вселенная. В поисках фундаментальной природы реальности - Макс Тегмарк - Прочая научная литература
- Очки-костыли. Почему очки опасны и как улучшить зрение, не пользуясь оптикой - Марина Ильинская - Прочая научная литература
- Подлинная история времени без ложных вымыслов Стивена Хокинга. Что такое время. Что такое национальная идея - Владимир Бутромеев - Прочая научная литература