Читать интересную книгу Путешествие к далеким мирам - Карл Гильзин

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 12 13 14 15 16 17 18 19 20 ... 94

Теперь уже можно говорить о том, что история опровергла эти утверждения. Нет сомнений, что весь ход развития авиации и реактивной техники подготавливает почву для решения задач астронавтики. Без опыта, накопленного за все эти годы авиацией и реактивной техникой, создание космического корабля было бы невозможным. Авиация и реактивная техника являются техническим фундаментом астронавтики. Именно поэтому с каждым годом возможность осуществления полетов в мировое пространство делается все более реальной и вековая мечта человечества — все более осуществимой.

Развитие реактивной техники вскрыло еще одну весьма интересную особенность, по существу предсказанную Циолковским. Две бывшие до сих пор самостоятельными ветви реактивной техники — авиация и артиллерия — постепенно сближаются. Конструктивные формы самолетов и ракет становятся все более сходными, и в них начинают угадываться будущие очертания космических кораблей. Самолеты постепенно теряют очертания, характерные для обычной винтовой авиации: нос фюзеляжа становится заостренным, как у снаряда; крылья уменьшаются в размерах, приобретают стреловидные очертания; дужка крыла вместо каплевидной формы получает заостренную переднюю кромку. С другой стороны, тяжелые реактивные снаряды приобретают небольшие крылышки и становятся очень похожими на некоторые новые, реактивные самолеты.

Сама механика полета самолетов может стать в будущем очень непохожей на принятую в настоящее время и приблизиться к артиллерийской. В настоящее время двигатель самолета, как известно, работает в течение всего времени полета, тогда как двигатель реактивного снаряда работает лишь в течение короткого промежутка времени — при запуске-выстреле. Установка на самолете ракетного двигателя, имеющего большую тягу, позволяет осуществить полет самолета по образцу полета снаряда. В этом случае двигатель самолета работает лишь короткое время при взлете, осуществляя разгон самолета до очень большой скорости и забрасывая его, подобно снаряду, на огромную высоту. Дальнейший полет самолета осуществляется с остановленным двигателем, так что топливо не расходуется, причем самолет совершает длительный планирующий полет с постепенным снижением. Расчет показывает, что самолет в состоянии пролететь при этом гораздо большее расстояние и совершить такой полет в значительно меньшее время, чем существующие сейчас самолеты любых типов.

Несомненно, именно так будут совершаться в будущем сверхдальние и сверхскоростные перелеты на Земле. Например, полет Владивосток — Москва можно будет совершить таким образом примерно за один час, обгоняя видимое движение Солнца. Так что, поужинав во Владивостоке, можно будет в тот же день… позавтракать в Москве! Такие полеты сближают авиацию с астронавтикой, ибо при их выполнении самолеты должны залетать, по существу, уже в преддверие мирового пространства. Техника полета межпланетного корабля будет также основана на коротком разгоне вначале и последующем длительном полете с остановленным двигателем. В главе 10 возможность таких астронавтических перелетов на Земле будет рассмотрена подробнее.

Формула Циолковского, о которой шла речь в предыдущей главе, показывает, в каком направлении должна развиваться реактивная техника, чтобы решить задачи астронавтики. Реактивные летательные аппараты должны совершенствоваться так, чтобы: а) на аппарате данного веса можно было разместить возможно большее весовое количество топлива; б) жидкостные ракетные двигатели обеспечивали максимально возможную скорость истечения газов.

Каковы же перспективы развития реактивной техники в обоих этих направлениях?

Возможности дальнейшего увеличения относительного запаса топлива на ракете в настоящее время весьма ограниченны. Вспомните дальнюю ракету, описанную в главе 6. Вес топлива на этой ракете превышал вес пустой ракеты (без полезного груза) примерно в 3 раза. В лучших образцах построенных одноступенчатых ракет это соотношение значительно больше, что является замечательным достижением. Ведь обыкновенный легкий алюминиевый бачок вместимостью 10 килограммов бензина весит примерно 1 килограмм. Значит, уже сейчас по весу ракеты на 1 килограмм запасенного на ней топлива она всего раза в полтора тяжелее такого бачка. Но ракета рассчитана на полет при огромных скоростях, она должна выдерживать большие инерционные перегрузки, возникающие в таком полете. Кроме того, на ракете установлены двигатели, сложное приборное оборудование, система управления в полете. Все это значительно увеличивает ее вес.

Современные скоростные самолеты становятся похожими на снаряды.

Конечно, ракета имеет гораздо большие размеры, что позволяет создать относительно более легкую конструкцию; в ней могут быть применены и специальные прочные и легкие материалы. Однако только при использовании предложенных Циолковским составных ракет можно добиться того, чтобы на 1 килограмм веса ракеты, который она будет иметь после выработки всего топлива, приходились многие десятки килограммов веса топлива при взлете, что необходимо для осуществления космического полета. А идея Цандера использовать части конструкции ракеты в качестве топлива может увеличить это отношение еще во много раз.

Вот почему астронавтику интересует больше всего то направление развития реактивных летательных аппаратов, которое связано с совершенствованием конструкции составных ракет, накоплением опыта их эксплуатации, осуществлением все более высотных и дальних полетов этих ракет, сначала без людей, а потом с людьми.

Одной из важнейших проблем является создание новых материалов, из которых будут строиться межпланетные корабли. Материалы должны быть прочными, легкими, жаростойкими. Вряд ли для этой цели пригодятся алюминиевые и магниевые сплавы, являющиеся в настоящее время основными конструкционными материалами в авиации. Если эти сплавы и найдут применение на межпланетном корабле, то только для различных вспомогательных целей. Основными материалами будут, по-видимому, новые сплавы, созданные металлургами, и новые пластмассы, созданные химиками. Вероятно, на межпланетном корабле найдут широкое применение специальные высокожаропрочные стали, новые керамические материальна также комбинации тех и других — для участков корабля, которые, будут подвергаться особенно сильному нагреву в полете.

Каковы возможности применения на межпланетном корабле новых, необычных еще сегодня материалов, можно видеть хотя бы на примере стекла. Не исключено, что многие части космических кораблей и даже вся его обшивка будут изготовлены именно из стекла. Конечно, это будет не обычное, всем хорошо известное стекло. В последние годы созданы замечательные сорта стекла, обладающие многими ценными качествами для астронавтики. Так, например, в США создано стекло, имеющее в отличие от обычного кристаллическую структуру. Это стекло тверже стали, легче алюминия, в 15 раз прочнее обычного стекла, причем эту свою твердость оно не теряет даже при нагреве до 700 °C; его температура плавления близка к температуре плавления железа. Из такого стекла можно изготовить даже такие детали, как лопатки турбин. Новое стекло может быть сделано как прозрачным, так и непрозрачным. Вот почему можно представить целиком стеклянный космический корабль будущего с прозрачными стенками пассажирской кабины…

Конечно, почетное место в конструкция межпланетного корабля займут металлы. Так, несомненно, будут использованы титановые сплавы, получающие все большее применение в современной авиации. Большое будущее принадлежит, вероятно, сплавам бериллия — исключительно легкого материала (почти вдвое более легкого, чем алюминий: его удельный вес равен всего 1,83) и в то же время очень прочного, выносящего высокие температуры. Большую роль может сыграть и литий — самый легкий металл, вдвое более легкий, чем вода. Будут служить астронавтике и многие редкие металлы — такие, как цирконий, гафний, ниобий и другие. Создание новых жаропрочных и легких материалов для астронавтики — сложнейшая научная и инженерная задача, требующая длительных и упорных исследований. Можно не сомневаться, что она будет решена — наука дает металлургам все большие возможности переходить от поисков на ощупь, наугад, по интуиции, которые были характерны для недалекого прошлого, к уверенному инженерному «проектированию» новых конструкционных материалов с заданными, иной раз самыми необычными, свойствами.

Не менее сложна и трудна задача увеличения скорости истечения газов из жидкостного ракетного двигателя. В настоящее время эта скорость не превышает 2500–3000 метров в секунду. Увеличение скорости истечения газов происходит очень медленно и достигается ценой больших усилий. Для того чтобы добиться увеличения скорости истечения газов, приходится решать сразу две самостоятельные задачи — искать более калорийные топлива, то есть топлива, выделяющие при сгорании больше тепла, и обеспечивать работоспособность двигателя на этих топливах. Чем больше тепла выделяет топливо при сгорании в двигателе, тем больше при прочих равных условиях скорость истечения газов из двигателя.

1 ... 12 13 14 15 16 17 18 19 20 ... 94
На этом сайте Вы можете читать книги онлайн бесплатно русская версия Путешествие к далеким мирам - Карл Гильзин.
Книги, аналогичгные Путешествие к далеким мирам - Карл Гильзин

Оставить комментарий